Suppr超能文献

用于骨修复应用的新型电活性矿化聚丙烯腈/聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐电纺纳米纤维

Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications.

机构信息

Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

出版信息

Int J Mol Sci. 2023 Aug 25;24(17):13203. doi: 10.3390/ijms241713203.

Abstract

Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.

摘要

骨缺损修复仍然是当前骨科临床实践中的一个关键挑战,因为现有的治疗策略只能提供不理想的结果。因此,骨组织工程(BTE)方法,涉及开发仿生可植入支架与成骨前体细胞和类似天然的物理刺激相结合,越来越受到关注。研究发现,基于电刺激(ES)的治疗方法在体内和体外环境中都能积极促进骨生长和成骨作用。因此,包含导电生物材料和 ES 的电活性支架的组合在改善 BTE 临床应用的效果方面具有重要意义。本研究旨在通过静电纺丝技术制备仿生纤维状细胞外基质(ECM)的电活性聚丙烯腈/聚(3,4-亚乙基二氧噻吩):聚苯乙烯磺酸盐(PAN/PEDOT:PSS)纳米纤维,为外源性 ES 的输送提供平台。成功地将具有类骨磷灰石结构的纳米纤维进行了功能化,以模拟骨 ECM 的无机相。结果表明,电纺支架具有类似胶原纤维的纳米级纤维直径和类骨导电性,且 PEDOT:PSS 的掺入可显著促进体外支架矿化。矿化电导率纳米纤维表现出更好的生物学性能,人成骨样 MG-63 细胞和人骨髓间充质干细胞/基质细胞(hBM-MSCs)的增殖明显增强。此外,矿化 PAN/PEDOT:PSS 纳米纤维上调了 hBM-MSCs 成骨分化过程中骨标记基因的表达水平,突出了其作为电活性仿生 BTE 支架用于创新骨缺损修复策略的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6713/10488027/08bc6c2b5d5d/ijms-24-13203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验