Suppr超能文献

快速传播动物传染病的网络特性。

Connecting network properties of rapidly disseminating epizoonotics.

机构信息

Center for Global Health, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, United States of America.

出版信息

PLoS One. 2012;7(6):e39778. doi: 10.1371/journal.pone.0039778. Epub 2012 Jun 25.

Abstract

BACKGROUND

To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure.

METHODS

Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) 'connectivity', a model that integrated bio-physical concepts (the agent's transmission cycle, road topology) into indicators designed to measure networks ('nodes' or infected sites with short- and long-range links), and 2) 'contacts', which focused on infected individuals but did not assess connectivity.

RESULTS

THE CONNECTIVITY MODEL SHOWED FIVE NETWORK PROPERTIES: 1) spatial aggregation of cases (disease clusters), 2) links among similar 'nodes' (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a "20:80" pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads.

CONCLUSIONS

Geo-temporal constructs of Network Theory's nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable to revise theory and optimize control measures. Prospective studies that consider pre-outbreak predictors, such as connecting networks, are recommended.

摘要

背景

为了有效控制传染病的地理传播,需要确定其特性。为了检验快速微生物传播不仅需要易感宿主,还需要一个预先存在的、连接的网络,我们探索了旨在揭示与疾病传播相关的网络特性的构建体,其中包括道路结构。

方法

利用从 2001 年乌拉圭口蹄疫期间所有宿主易感(哺乳动物感染口蹄疫病毒)和 2006 年尼日利亚鸟类感染 H5N1 禽流感期间收集的地理时空数据,比较了两种模型:1)“连通性”模型,该模型将生物物理概念(传播周期)纳入旨在测量网络的指标中(具有短程和远程连接的“节点”或感染地点);2)“接触”模型,该模型侧重于感染个体,但不评估连通性。

结果

连通性模型显示了五个网络特性:1)病例的空间聚集(疾病集群);2)类似“节点”之间的联系(聚类);3)类似节点的同时激活(同步性);4)从高连通性节点到低连通性节点的疾病流动(方向性);5)少数节点占大多数病例(“20:80”模式)。在这两种动物传染病中,1)并非所有原发性病例都有联系,但至少有一个原发性病例有联系;2)高度连通的小区域(节点)占大多数病例;3)区分了几个节点类别;4)接触模型,该模型假设所有原发性病例都相同,仅捕获了连通性模型识别的病例数的一半。当一起评估时,同步性和方向性特性解释了传染病何时何地传播。

结论

网络理论节点和链接的地理时空构建体在快速传播的传染病中得到了回顾性验证。它们区分了病例、节点和网络的类别,生成了可用于修改理论和优化控制措施的信息。建议进行前瞻性研究,考虑连接网络等爆发前的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf74/3382573/2d8a327c331e/pone.0039778.g001.jpg

相似文献

1
Connecting network properties of rapidly disseminating epizoonotics.
PLoS One. 2012;7(6):e39778. doi: 10.1371/journal.pone.0039778. Epub 2012 Jun 25.
4
The impact of contact patterns on epidemic dynamics.
PLoS One. 2017 Mar 14;12(3):e0173411. doi: 10.1371/journal.pone.0173411. eCollection 2017.
6
The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
Prev Vet Med. 2011 Dec 1;102(3):185-95. doi: 10.1016/j.prevetmed.2011.07.006. Epub 2011 Aug 17.
8
Link removal for the control of stochastically evolving epidemics over networks: a comparison of approaches.
J Theor Biol. 2015 Apr 21;371:154-65. doi: 10.1016/j.jtbi.2015.02.005. Epub 2015 Feb 16.
10
Lessons from Nigeria: the role of roads in the geo-temporal progression of avian influenza (H5N1) virus.
Epidemiol Infect. 2010 Feb;138(2):192-8. doi: 10.1017/S0950268809990495. Epub 2009 Aug 5.

引用本文的文献

1
Multidimensional perspectives of geo-epidemiology: from interdisciplinary learning and research to cost-benefit oriented decision-making.
Front Public Health. 2024 Dec 30;12:1492426. doi: 10.3389/fpubh.2024.1492426. eCollection 2024.
2
3
Assessing complexity and dynamics in epidemics: geographical barriers and facilitators of foot-and-mouth disease dissemination.
Front Vet Sci. 2023 May 12;10:1149460. doi: 10.3389/fvets.2023.1149460. eCollection 2023.
5
Heterogeneity of the COVID-19 Pandemic in the United States of America: A Geo-Epidemiological Perspective.
Front Public Health. 2022 Jan 26;10:818989. doi: 10.3389/fpubh.2022.818989. eCollection 2022.
7
Biologically grounded scientific methods: The challenges ahead for combating epidemics.
Methods. 2021 Nov;195:113-119. doi: 10.1016/j.ymeth.2021.09.001. Epub 2021 Sep 4.
8
Test positivity - Evaluation of a new metric to assess epidemic dispersal mediated by non-symptomatic cases.
Methods. 2021 Nov;195:15-22. doi: 10.1016/j.ymeth.2021.05.017. Epub 2021 May 25.
9
COVID-19 related interdisciplinary methods: Preventing errors and detecting research opportunities.
Methods. 2021 Nov;195:3-14. doi: 10.1016/j.ymeth.2021.05.014. Epub 2021 May 23.
10
Early network properties of the COVID-19 pandemic - The Chinese scenario.
Int J Infect Dis. 2020 Jul;96:519-523. doi: 10.1016/j.ijid.2020.05.049. Epub 2020 May 26.

本文引用的文献

1
Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19359-64. doi: 10.1073/pnas.1109314108. Epub 2011 Nov 14.
2
Invasion threshold in structured populations with recurrent mobility patterns.
J Theor Biol. 2012 Jan 21;293:87-100. doi: 10.1016/j.jtbi.2011.10.010. Epub 2011 Oct 19.
3
Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh.
PLoS One. 2011;6(9):e24324. doi: 10.1371/journal.pone.0024324. Epub 2011 Sep 9.
4
Predicting epidemic thresholds on complex networks: limitations of mean-field approaches.
J Theor Biol. 2011 Nov 7;288:21-8. doi: 10.1016/j.jtbi.2011.07.015. Epub 2011 Aug 7.
5
Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition.
Bull Math Biol. 2011 Nov;73(11):2707-30. doi: 10.1007/s11538-011-9654-4. Epub 2011 Apr 20.
7
Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts.
PLoS Comput Biol. 2011 Mar;7(3):e1001109. doi: 10.1371/journal.pcbi.1001109. Epub 2011 Mar 17.
8
Networks and the epidemiology of infectious disease.
Interdiscip Perspect Infect Dis. 2011;2011:284909. doi: 10.1155/2011/284909. Epub 2011 Mar 16.
9
Effective reproduction numbers are commonly overestimated early in a disease outbreak.
Stat Med. 2011 Apr 30;30(9):984-94. doi: 10.1002/sim.4174. Epub 2011 Feb 1.
10
Eliminating the mystery from the concept of emergence.
Biol Philos. 2010 Nov;25(5):843-849. doi: 10.1007/s10539-010-9230-6. Epub 2010 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验