Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Biomed Microdevices. 2013 Aug;15(4):665-671. doi: 10.1007/s10544-012-9678-z.
We present a resistive network model, protein assay data, and outlook of the giant magnetoresistive (GMR) spin-valve magneto-nanosensor platform ideal for multiplexed detection of protein biomarkers in solutions. The magneto-nanosensors are designed to have optimal performance considering several factors such as sensor dimension, shape anisotropy, and magnetic nanoparticle tags. The resistive network model indicates that thinner spin-valve sensors with narrower width lead to higher signals from magnetic nanoparticle tags. Standard curves and real-time measurements showed a sensitivity of ~10 pM for phosphorylated-structural maintenance of chromosome 1 (phosphor-SMC1), ~53 fM for granulocyte colony stimulation factor (GCSF), and ~460 fM for interleukin-6 (IL6), which are among the representative biomarkers for radiation exposure and cancer.
我们提出了一个电阻网络模型、蛋白质分析数据和用于溶液中蛋白质生物标志物的多重检测的巨磁电阻(GMR)自旋阀磁纳米传感器平台的展望。该磁纳米传感器的设计考虑了几个因素,如传感器尺寸、形状各向异性和磁性纳米粒子标记,以达到最佳性能。电阻网络模型表明,具有更窄宽度的更薄的自旋阀传感器会导致来自磁性纳米粒子标记的信号更高。标准曲线和实时测量显示,磷酸化结构维持染色体 1(磷酸-SMC1)的检测灵敏度约为 10 pM,粒细胞集落刺激因子(GCSF)的检测灵敏度约为 53 fM,白细胞介素-6(IL6)的检测灵敏度约为 460 fM,这些都是辐射暴露和癌症的代表性生物标志物。