Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo NY 14263, USA.
J Appl Clin Med Phys. 2012 Jul 5;13(4):3736. doi: 10.1120/jacmp.v13i4.3736.
This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the Portal Vision Dosimetry system.
这项研究比较了两种商业系统的 EPID 剂量学算法,用于预处理 QA,并分析了每个系统与标准二极管阵列一起进行的剂量测量结果。用两种 EPID 剂量学系统(Sun Nuclear Corporation 公司的 EPIDose,佛罗里达州墨尔本和 Varian Medical Systems 公司的 Portal Dosimetry,加利福尼亚州帕洛阿尔托)和二极管阵列 MapCHECK(也是 Sun Nuclear Corporation 公司的)对 126 个 IMRT 场进行了检查。用 EPIDose 和 MapCHECK 系统对 26 个调制复杂度不同的 VMAT 弧形进行了检查。详细介绍了 EPIDose 物理模型的优化和调试测试。测试了每个 EPID IMRT QA 系统对关键 TPS 光束模型误差的敏感性。绝对剂量伽马评估(3%、3mm、10%阈值、全局归一化为最大测量剂量)对于所有三种剂量学模式都产生了相似的结果(在 1%-2%范围内),除了在离轴乳房切线的情况下。对于这些离轴场,Portal Dosimetry 系统不能充分模拟 EPID 响应,尽管之前发布的校正算法可以提高性能。MapCHECK 和 EPIDose 都被发现对 VMAT QA 有很好的结果,尽管存在一些限制。尽管略有不同,Portal Dosimetry 和 EPIDose 算法对于大多数临床 IMRT 病例都产生了相似的结果,与标准二极管阵列非常吻合。尽管如此,由于 Portal Dosimetry 算法是基于二维图像重建,可能会忽略超出计算实际通量的光束建模误差,而 MapCHECK 和 EPIDose 算法包含对剂量计算算法的验证,尽管在简化的体模条件下进行(并且在 MapCHECK 探测器的情况下数据密度有限)。与商业的 Portal Dosimetry 软件包不同,当 EPIDose 算法得到充分优化时,它可以准确地分析离轴、不对称场的 EPID 响应,以及正交 VMAT QA。需要其他形式的 QA 来补充 Portal Vision Dosimetry 系统的局限性。