Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden.
J Biol Chem. 2012 Aug 31;287(36):30257-67. doi: 10.1074/jbc.M112.378521. Epub 2012 Jul 5.
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.
细菌的抗生素耐药性通常与适应性丧失有关,这种适应性丧失可以通过次级突变来补偿。夫西地酸(FA)是一种用于治疗致病性细菌金黄色葡萄球菌的抗生素,它在 GTP 水解后将延伸因子-G(EF-G)锁定在核糖体上。为了阐明与 FA 耐药性相关的适应性丧失和补偿的机制,我们已经对三个具有快速动力学和晶体结构的金黄色葡萄球菌 EF-G 突变体进行了表征。我们的结果表明,tRNA 易位和核糖体循环显著减慢,加上肽基-tRNA 脱落增加,是原发性 FA 耐药突变体 F88L 适应性缺陷的原因。双突变体 F88L/M16I 在两种反应中的速度比 F88L 快三到四倍,并且没有 tRNA 脱落,解释了其适应性补偿表型。单独的 M16I 突变对 FA 表现出超敏性、更高的活性和略微增加的 GTP 亲和力。晶体结构表明,II 型开关中的苯丙氨酸-88 是 FA 锁定的关键残基,也是 EF-G 中必需的结构域间运动的触发因素,这解释了 F88L 的功能缺陷。突变 M16I 使 G 结构域中的疏水性核心变松,并影响结构域 I 与结构域 II 的接触,从而提高了野生型和 F88L 背景下的活性。因此,导致适应性丧失和补偿的 FA 耐药性 EF-G 突变通过影响 EF-G 在核糖体上的构象动力学起作用。