Master Alyssa M, Livingston Megan, Oleinick Nancy L, Sen Gupta Anirban
Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, Ohio 44106, United States.
Mol Pharm. 2012 Aug 6;9(8):2331-8. doi: 10.1021/mp300256e. Epub 2012 Jul 19.
The current clinical mainstays for cancer treatment, namely, surgical resection, chemotherapy, and radiotherapy, can cause significant trauma, systemic toxicity, and functional/cosmetic debilitation of tissue, especially if repetitive treatment becomes necessary due to tumor recurrence. Hence there is significant clinical interest in alternate treatment strategies like photodynamic therapy (PDT) which can effectively and selectively eradicate tumors and can be safely repeated if needed. We have previously demonstrated that the second-generation photosensitizer Pc 4 (silicon phthalocyanine 4) can be formulated within polymeric micelles, and these micelles can be specifically targeted to EGFR-overexpressing cancer cells using GE11 peptide ligands, to enhance cell-specific Pc 4 delivery and internalization. In the current study, we report on the in vitro optimization of the EGFR-targeting, Pc 4 loading of the micellar nanoformulation, along with optimization of the corresponding photoirradiation conditions to maximize Pc 4 delivery, internalization, and subsequent PDT-induced cytotoxicity in EGFR-overexpressing cells in vitro. In our studies, absorption and fluorescence spectroscopy were used to monitor the cell-specific uptake of the GE11-decorated Pc 4-loaded micelles and the cytotoxic singlet oxygen production from the micelle-encapsulated Pc 4, to determine the optimum ligand density and Pc 4 loading. It was found that the micelle formulations bearing 10 mol % of GE11-modified polymer component resulted in the highest cellular uptake in EGFR-overexpressing A431 cells within the shortest incubation periods. Also, the loading of ∼ 50 μg of Pc 4 per mg of polymer in these micellar formulations resulted in the highest levels of singlet oxygen production. When formulations bearing these optimized parameters were tested in vitro on A431 cells for PDT effect, a formulation dose containing 400 nM Pc 4 and photoirradiation duration of 400 s at a fluence of 200 mJ/cm(2) yielded close to 100% cell death.
目前癌症治疗的临床主要手段,即手术切除、化疗和放疗,会造成严重创伤、全身毒性以及组织功能/外观受损,尤其是当肿瘤复发需要重复治疗时。因此,光动力疗法(PDT)等替代治疗策略引起了临床的极大兴趣,这种疗法能够有效且选择性地根除肿瘤,如有需要还可安全重复使用。我们之前已经证明,第二代光敏剂Pc 4(硅酞菁4)可以被制备在聚合物胶束中,并且这些胶束可以使用GE11肽配体特异性靶向表皮生长因子受体(EGFR)过表达的癌细胞,以增强细胞特异性的Pc 4递送和内化。在当前研究中,我们报告了胶束纳米制剂的EGFR靶向、Pc 4负载的体外优化,以及相应光照射条件的优化,以在体外使EGFR过表达细胞中Pc 4的递送、内化以及随后的PDT诱导的细胞毒性最大化。在我们的研究中,吸收光谱和荧光光谱被用于监测GE11修饰的负载Pc 4的胶束的细胞特异性摄取以及胶束包裹的Pc 4产生的细胞毒性单线态氧,以确定最佳配体密度和Pc 4负载量。结果发现,含有10摩尔% GE11修饰聚合物组分的胶束制剂在最短孵育期内导致EGFR过表达的A431细胞中摄取量最高。此外,这些胶束制剂中每毫克聚合物负载约50微克的Pc 4导致单线态氧产生水平最高。当在体外对A431细胞测试具有这些优化参数的制剂的PDT效果时,含有400 nM Pc 4且在200 mJ/cm²的光通量下光照射持续时间为400秒的制剂剂量产生了接近100%的细胞死亡。