Department of Electrical Engineering and Computer Science, University of California, 656 Sutardja Dai Hall,Berkeley, Berkeley, CA, 94720, USA.
J Biol Eng. 2012 Jul 9;6(1):9. doi: 10.1186/1754-1611-6-9.
Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit.
In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon.
To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.
双稳性是工程和自然系统中的一个基本特性,赋予了切换和保持状态的能力。原核生物中合成的双稳态开关主要利用转录成分进行构建。使用转录和酶成分创建混合系统,可以在电路中实现更宽的双稳参数范围。
在本文中,我们使用转录成分和酶成分在大肠杆菌中展示了一系列可调谐的混合双稳态开关。该设计包含两个链接的正反馈回路。第一个回路利用λ阻遏物 CI,第二个正反馈回路包含在 Mesoplasma florum(mf-Lon)中发现的 Lon 蛋白酶。我们在指数生长阶段对双稳态行为进行了实验测试,发现我们的混合双稳态开关在没有输入信号的情况下能够在 40 个细胞分裂周期内保持其状态。我们还测试了开关的瞬态行为,发现 mf-Lon 的表达率可以调节开关的切换速度。
据我们所知,这项工作首次展示了动态表达正交和异源蛋白酶来调谐非线性蛋白降解回路。混合开关对于在原核系统中使用可能是一种更稳健和可调谐的拓扑结构。