Suppr超能文献

基于荟萃分析条件功效规划未来研究。

Planning future studies based on the conditional power of a meta-analysis.

机构信息

MRC Biostatistics Unit, Cambridge, U.K.

出版信息

Stat Med. 2013 Jan 15;32(1):11-24. doi: 10.1002/sim.5524. Epub 2012 Jul 11.

Abstract

Systematic reviews often provide recommendations for further research. When meta-analyses are inconclusive, such recommendations typically argue for further studies to be conducted. However, the nature and amount of future research should depend on the nature and amount of the existing research. We propose a method based on conditional power to make these recommendations more specific. Assuming a random-effects meta-analysis model, we evaluate the influence of the number of additional studies, of their information sizes and of the heterogeneity anticipated among them on the ability of an updated meta-analysis to detect a prespecified effect size. The conditional powers of possible design alternatives can be summarized in a simple graph which can also be the basis for decision making. We use three examples from the Cochrane Database of Systematic Reviews to demonstrate our strategy. We demonstrate that if heterogeneity is anticipated, it might not be possible for a single study to reach the desirable power no matter how large it is.

摘要

系统评价通常会为进一步的研究提供建议。当荟萃分析没有明确结论时,通常会建议进行进一步的研究。然而,未来研究的性质和数量应该取决于现有研究的性质和数量。我们提出了一种基于条件功效的方法,以使这些建议更加具体。假设一个随机效应荟萃分析模型,我们评估了额外研究的数量、信息大小以及预期的异质性对更新荟萃分析检测预定效果大小的能力的影响。可能的设计选择的条件功效可以用一个简单的图表来总结,也可以作为决策的基础。我们使用 Cochrane 系统评价数据库中的三个例子来说明我们的策略。我们表明,如果预期存在异质性,那么无论单个研究的规模有多大,都可能无法达到理想的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee8/3562483/115a8649cd57/sim0032-0011-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验