Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid.
J Phys Chem B. 2012 Aug 16;116(32):9595-603. doi: 10.1021/jp301601g. Epub 2012 Aug 3.
We examine the budding of a nanoscale particle through a lipid bilayer using molecular dynamics simulations, free energy calculations, and an elastic theory, with the aim of determining the extent to which equilibrium elasticity theory can describe the factors that control the mechanism and efficiency of budding. The particle is a smooth sphere which experiences attractive interactions to the lipid head groups. Depending on the parameters, we observe four classes of dynamical trajectories: particle adhesion to the membrane, stalled partially wrapped states, budding followed by scission, and membrane rupture. In most regions of parameter space we find that the elastic theory agrees nearly quantitatively with the simulated phase behavior as a function of adhesion strength, membrane bending rigidity, and particle radius. However, at parameter values near the transition between particle adhesion and budding, we observe long-lived partially wrapped states which are not captured by existing elastic theories. These states could constrain the accessible system parameters for those enveloped viruses or drug delivery vehicles which rely on exo- or endocytosis for membrane transport.
我们使用分子动力学模拟、自由能计算和弹性理论研究了纳米颗粒通过脂质双层的出芽过程,旨在确定平衡弹性理论在多大程度上可以描述控制出芽机制和效率的因素。该颗粒是一个光滑的球体,与脂质头部基团具有吸引力相互作用。根据参数的不同,我们观察到四种动力学轨迹:颗粒与膜的粘附、部分包裹的停滞状态、出芽后分裂和膜破裂。在大多数参数空间区域,我们发现弹性理论与模拟的相行为非常吻合,相行为是作为粘附强度、膜弯曲刚度和颗粒半径的函数。然而,在接近颗粒粘附和出芽之间的转变的参数值处,我们观察到了由现有弹性理论无法捕捉的长寿命的部分包裹状态。这些状态可能会限制那些依赖于胞外或胞内作用进行膜运输的包膜病毒或药物输送载体的可及系统参数。