Suppr超能文献

基于信息论解剖先验的 PET 图像重建。

PET image reconstruction using information theoretic anatomical priors.

机构信息

Signal and Image Processing Institute of University of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Med Imaging. 2011 Mar;30(3):537-49. doi: 10.1109/TMI.2010.2076827. Epub 2010 Sep 16.

Abstract

We describe a nonparametric framework for incorporating information from co-registered anatomical images into positron emission tomographic (PET) image reconstruction through priors based on information theoretic similarity measures. We compare and evaluate the use of mutual information (MI) and joint entropy (JE) between feature vectors extracted from the anatomical and PET images as priors in PET reconstruction. Scale-space theory provides a framework for the analysis of images at different levels of detail, and we use this approach to define feature vectors that emphasize prominent boundaries in the anatomical and functional images, and attach less importance to detail and noise that is less likely to be correlated in the two images. Through simulations that model the best case scenario of perfect agreement between the anatomical and functional images, and a more realistic situation with a real magnetic resonance image and a PET phantom that has partial volumes and a smooth variation of intensities, we evaluate the performance of MI and JE based priors in comparison to a Gaussian quadratic prior, which does not use any anatomical information. We also apply this method to clinical brain scan data using F(18) Fallypride, a tracer that binds to dopamine receptors and therefore localizes mainly in the striatum. We present an efficient method of computing these priors and their derivatives based on fast Fourier transforms that reduce the complexity of their convolution-like expressions. Our results indicate that while sensitive to initialization and choice of hyperparameters, information theoretic priors can reconstruct images with higher contrast and superior quantitation than quadratic priors.

摘要

我们描述了一种非参数框架,通过基于信息论相似性度量的先验信息,将来自配准的解剖图像的信息纳入正电子发射断层扫描(PET)图像重建中。我们比较和评估了从解剖图像和 PET 图像中提取的特征向量之间的互信息(MI)和联合熵(JE)作为 PET 重建中的先验信息的使用。尺度空间理论为在不同细节水平上分析图像提供了一个框架,我们使用这种方法来定义特征向量,强调解剖和功能图像中的显著边界,而不太重视不太可能在两幅图像中相关的细节和噪声。通过模拟完美一致的解剖和功能图像的最佳情况,以及更现实的情况,即使用真实的磁共振图像和具有部分体积和强度平滑变化的 PET 幻影,我们评估了 MI 和 JE 基于先验信息与不使用任何解剖信息的高斯二次先验的性能。我们还使用 F(18) Fallypride 对临床大脑扫描数据应用这种方法,Fallypride 是一种与多巴胺受体结合的示踪剂,因此主要定位在纹状体中。我们提出了一种基于快速傅里叶变换的有效计算这些先验及其导数的方法,该方法减少了它们卷积式表达式的复杂性。我们的结果表明,虽然对初始化和超参数的选择敏感,但信息论先验可以重建具有更高对比度和更高定量精度的图像,优于二次先验。

相似文献

1
PET image reconstruction using information theoretic anatomical priors.
IEEE Trans Med Imaging. 2011 Mar;30(3):537-49. doi: 10.1109/TMI.2010.2076827. Epub 2010 Sep 16.
2
PET image reconstruction using multi-parametric anato-functional priors.
Phys Med Biol. 2017 Jul 6;62(15):5975-6007. doi: 10.1088/1361-6560/aa7670.
3
Detail-Preserving PET Reconstruction with Sparse Image Representation and Anatomical Priors.
Inf Process Med Imaging. 2015;24:540-51. doi: 10.1007/978-3-319-19992-4_42.
4
Optimization of PET-MR registrations for nonhuman primates using mutual information measures: a Multi-Transform Method (MTM).
Neuroimage. 2013 Jan 1;64:571-81. doi: 10.1016/j.neuroimage.2012.08.051. Epub 2012 Aug 25.
6
Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
Med Phys. 2004 May;31(5):1083-92. doi: 10.1118/1.1688041.
7
Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy.
Phys Med Biol. 2015 Jan 7;60(1):31-48. doi: 10.1088/0031-9155/60/1/31. Epub 2014 Dec 5.
8
PET transmission tomography using a novel nonlocal MRF prior.
Comput Med Imaging Graph. 2009 Dec;33(8):623-33. doi: 10.1016/j.compmedimag.2009.06.005. Epub 2009 Aug 31.
9
Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging.
IEEE Trans Med Imaging. 2012 Mar;31(3):599-612. doi: 10.1109/TMI.2011.2173766. Epub 2011 Oct 27.

引用本文的文献

1
A Review on Low-Dose Emission Tomography Post-Reconstruction Denoising with Neural Network Approaches.
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):333-347. doi: 10.1109/trpms.2023.3349194. Epub 2024 Jan 2.
2
Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs.
MAGMA. 2024 Aug;37(4):749-763. doi: 10.1007/s10334-024-01199-y. Epub 2024 Aug 21.
3
IE-CycleGAN: improved cycle consistent adversarial network for unpaired PET image enhancement.
Eur J Nucl Med Mol Imaging. 2024 Nov;51(13):3874-3887. doi: 10.1007/s00259-024-06823-6. Epub 2024 Jul 23.
4
SPECT reconstruction with a trained regularizer using CT-side information: Application to Lu SPECT imaging.
IEEE Trans Comput Imaging. 2023;9:846-856. doi: 10.1109/tci.2023.3318993. Epub 2023 Sep 25.
6
Virtual high-count PET image generation using a deep learning method.
Med Phys. 2022 Sep;49(9):5830-5840. doi: 10.1002/mp.15867. Epub 2022 Aug 13.
7
A personalized deep learning denoising strategy for low-count PET images.
Phys Med Biol. 2022 Jul 13;67(14). doi: 10.1088/1361-6560/ac783d.
8
Voxel-based partial volume correction of PET images via subtle MRI guided non-local means regularization.
Phys Med. 2021 Sep;89:129-139. doi: 10.1016/j.ejmp.2021.07.028. Epub 2021 Aug 5.
9
Effect of PET-MR Inconsistency in the Kernel Image Reconstruction Method.
IEEE Trans Radiat Plasma Med Sci. 2019 Jul;3(4):400-409. doi: 10.1109/trpms.2018.2884176. Epub 2018 Nov 30.
10
Super-Resolution PET Imaging Using Convolutional Neural Networks.
IEEE Trans Comput Imaging. 2020;6:518-528. doi: 10.1109/tci.2020.2964229. Epub 2020 Jan 6.

本文引用的文献

1
Information theoretic regularization in diffuse optical tomography.
J Opt Soc Am A Opt Image Sci Vis. 2009 May;26(5):1277-90. doi: 10.1364/josaa.26.001277.
2
Implementing and accelerating the em algorithm for positron emission tomography.
IEEE Trans Med Imaging. 1987;6(1):37-51. doi: 10.1109/TMI.1987.4307796.
3
Incorporation of correlated structural images in PET image reconstruction.
IEEE Trans Med Imaging. 1994;13(4):627-40. doi: 10.1109/42.363105.
4
Bayesian reconstruction of functional images using anatomical information as priors.
IEEE Trans Med Imaging. 1993;12(4):670-80. doi: 10.1109/42.251117.
5
Bayesian reconstruction and use of anatomical a priori information for emission tomography.
IEEE Trans Med Imaging. 1996;15(5):673-86. doi: 10.1109/42.538945.
6
Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy.
IEEE Trans Med Imaging. 2004 Apr;23(4):510-9. doi: 10.1109/TMI.2004.825623.
7
Magnetic resonance image tissue classification using a partial volume model.
Neuroimage. 2001 May;13(5):856-76. doi: 10.1006/nimg.2000.0730.
8
Multi-modal volume registration by maximization of mutual information.
Med Image Anal. 1996 Mar;1(1):35-51. doi: 10.1016/s1361-8415(01)80004-9.
9
High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner.
Phys Med Biol. 1998 Apr;43(4):1001-13. doi: 10.1088/0031-9155/43/4/027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验