Signal and Image Processing Institute of University of Southern California, Los Angeles, CA 90089, USA.
IEEE Trans Med Imaging. 2011 Mar;30(3):537-49. doi: 10.1109/TMI.2010.2076827. Epub 2010 Sep 16.
We describe a nonparametric framework for incorporating information from co-registered anatomical images into positron emission tomographic (PET) image reconstruction through priors based on information theoretic similarity measures. We compare and evaluate the use of mutual information (MI) and joint entropy (JE) between feature vectors extracted from the anatomical and PET images as priors in PET reconstruction. Scale-space theory provides a framework for the analysis of images at different levels of detail, and we use this approach to define feature vectors that emphasize prominent boundaries in the anatomical and functional images, and attach less importance to detail and noise that is less likely to be correlated in the two images. Through simulations that model the best case scenario of perfect agreement between the anatomical and functional images, and a more realistic situation with a real magnetic resonance image and a PET phantom that has partial volumes and a smooth variation of intensities, we evaluate the performance of MI and JE based priors in comparison to a Gaussian quadratic prior, which does not use any anatomical information. We also apply this method to clinical brain scan data using F(18) Fallypride, a tracer that binds to dopamine receptors and therefore localizes mainly in the striatum. We present an efficient method of computing these priors and their derivatives based on fast Fourier transforms that reduce the complexity of their convolution-like expressions. Our results indicate that while sensitive to initialization and choice of hyperparameters, information theoretic priors can reconstruct images with higher contrast and superior quantitation than quadratic priors.
我们描述了一种非参数框架,通过基于信息论相似性度量的先验信息,将来自配准的解剖图像的信息纳入正电子发射断层扫描(PET)图像重建中。我们比较和评估了从解剖图像和 PET 图像中提取的特征向量之间的互信息(MI)和联合熵(JE)作为 PET 重建中的先验信息的使用。尺度空间理论为在不同细节水平上分析图像提供了一个框架,我们使用这种方法来定义特征向量,强调解剖和功能图像中的显著边界,而不太重视不太可能在两幅图像中相关的细节和噪声。通过模拟完美一致的解剖和功能图像的最佳情况,以及更现实的情况,即使用真实的磁共振图像和具有部分体积和强度平滑变化的 PET 幻影,我们评估了 MI 和 JE 基于先验信息与不使用任何解剖信息的高斯二次先验的性能。我们还使用 F(18) Fallypride 对临床大脑扫描数据应用这种方法,Fallypride 是一种与多巴胺受体结合的示踪剂,因此主要定位在纹状体中。我们提出了一种基于快速傅里叶变换的有效计算这些先验及其导数的方法,该方法减少了它们卷积式表达式的复杂性。我们的结果表明,虽然对初始化和超参数的选择敏感,但信息论先验可以重建具有更高对比度和更高定量精度的图像,优于二次先验。