Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2012 Aug 1;134(30):12637-47. doi: 10.1021/ja303739g. Epub 2012 Jul 23.
The application of 35 GHz pulsed EPR and ENDOR spectroscopies has established that the biomimetic model complex L(3)Fe(μ-NH)(μ-H)FeL(3) (L(3) = PhB(CH(2)PPh(2))(3)) complex, 3, is a novel S = (1)/(2) type-III mixed-valence di-iron II/III species, in which the unpaired electron is shared equally between the two iron centers. (1,2)H and (14,15)N ENDOR measurements of the bridging imide are consistent with an allyl radical molecular orbital model for the two bridging ligands. Both the (μ-H) and the proton of the (μ-NH) of the crystallographically characterized 3 show the proposed signature of a 'bridging' hydride that is essentially equidistant between two 'anchor' metal ions: a rhombic dipolar interaction tensor, T ≈ [T, -T, 0]. The point-dipole model for describing the anisotropic interaction of a bridging H as the sum of the point-dipole couplings to the 'anchor' metal ions reproduces this signature with high accuracy, as well as the axial tensor of a terminal hydride, T ≈ [-T, -T, 2T], thus validating both the model and the signatures. This validation in turn lends strong support to the assignment, based on such a point-dipole analysis, that the molybdenum-iron cofactor of nitrogenase contains two [Fe-H(-)-Fe] bridging-hydride fragments in the catalytic intermediate that has accumulated four reducing equivalents (E(4)). Analysis further reveals a complementary similarity between the isotropic hyperfine couplings for the bridging hydrides in 3 and E(4). This study provides a foundation for spectroscopic study of hydrides in a variety of reducing metalloenzymes in addition to nitrogenase.
35GHz 脉冲 EPR 和 ENDOR 光谱学的应用已经确定,仿生模型配合物 L(3)Fe(μ-NH)(μ-H)FeL(3)(L(3)=PhB(CH(2)PPh(2))(3)),3,是一种新型 S = (1)/(2) 型 III 混合价二铁 II/III 物种,其中未配对电子在两个铁中心之间平均分配。(1,2)H 和(14,15)N ENDOR 测量桥接亚胺与两个桥接配体的烯丙基自由基分子轨道模型一致。晶体结构表征的 3 中的(μ-H)和(μ-NH)质子都表现出“桥接”氢的特征,该氢基本上位于两个“锚定”金属离子之间的等距处:一个菱形偶极相互作用张量,T ≈ [T, -T, 0]。描述桥接 H 各向异性相互作用的点偶极子模型作为到“锚定”金属离子的点偶极子耦合的和,以高精度再现该特征,以及末端氢化物的轴向张量,T ≈ [-T, -T, 2T],从而验证了模型和特征。这种验证反过来又为基于这种点偶极子分析的氮酶钼铁辅因子在积累了四个还原当量(E(4))的催化中间体内包含两个[Fe-H(-)-Fe]桥接氢化物片段的分配提供了强有力的支持。分析进一步揭示了 3 中桥接氢化物的各向同性超精细耦合与 E(4)之间的互补相似性。这项研究为除氮酶以外的各种还原金属酶中氢化物的光谱学研究奠定了基础。