Suppr超能文献

基于细胞表面成分变化的 Arthrobacter 菌株的表面增强拉曼光谱(SERS)鉴别。

Surface enhanced Raman spectroscopy (SERS) for the discrimination of Arthrobacter strains based on variations in cell surface composition.

机构信息

Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Analyst. 2012 Sep 21;137(18):4280-6. doi: 10.1039/c2an35578g. Epub 2012 Jul 30.

Abstract

Surface enhanced Raman spectroscopy (SERS) is a rapid and highly sensitive spectroscopic technique that has the potential to measure chemical changes in bacterial cell surface in response to environmental changes. The objective of this study was to determine whether SERS had sufficient resolution to differentiate closely related bacteria within a genus grown on solid and liquid medium, and a single Arthrobacter strain grown in multiple chromate concentrations. Fourteen closely related Arthrobacter strains, based on their 16S rRNA gene sequences, were used in this study. After performing principal component analysis in conjunction with Linear Discriminant Analysis, we used a novel, adapted cross-validation method, which more faithfully models the classification of spectra. All fourteen strains could be classified with up to 97% accuracy. The hierarchical trees comparing SERS spectra from the liquid and solid media datasets were different. Additionally, hierarchical trees created from the Raman data were different from those obtained using 16S rRNA gene sequences (a phylogenetic measure). A single bacterial strain grown on solid media culture with three different chromate levels also showed significant spectral distinction at discrete points identified by the new Elastic Net regularized regression method demonstrating the ability of SERS to detect environmentally induced changes in cell surface composition. This study demonstrates that SERS is effective in distinguishing between a large number of very closely related Arthrobacter strains and could be a valuable tool for rapid monitoring and characterization of phenotypic variations in a single population in response to environmental conditions.

摘要

表面增强拉曼光谱(SERS)是一种快速且高灵敏度的光谱技术,具有测量细菌细胞表面对环境变化的化学变化的潜力。本研究的目的是确定 SERS 是否具有足够的分辨率来区分固体和液体培养基中生长的属内密切相关的细菌,以及在多个铬酸盐浓度下生长的单个节杆菌菌株。在本研究中使用了基于 16S rRNA 基因序列的 14 株密切相关的节杆菌菌株。在进行主成分分析与线性判别分析相结合之后,我们使用了一种新颖的、适应性的交叉验证方法,该方法更忠实地模拟了光谱的分类。所有 14 株菌株的分类准确率高达 97%。比较液体和固体培养基数据集的 SERS 光谱的层次树是不同的。此外,基于拉曼数据创建的层次树与使用 16S rRNA 基因序列(一种系统发育度量)获得的层次树不同。在三个不同铬酸盐水平的固体培养基上生长的单个细菌菌株也显示出离散点的显著光谱差异,这些离散点是由新的弹性网络正则化回归方法确定的,这证明了 SERS 检测细胞表面组成的环境诱导变化的能力。本研究表明,SERS 可有效区分大量非常密切相关的节杆菌菌株,并且可能是快速监测和描述对环境条件的单一群体表型变化的有价值的工具。

相似文献

3
Polyphasic taxonomic study of strain CCM 2783 resulting in the description of Arthrobacter stackebrandtii sp. nov.
Int J Syst Evol Microbiol. 2005 Mar;55(Pt 2):805-808. doi: 10.1099/ijs.0.63428-0.
6
Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 5;278:121315. doi: 10.1016/j.saa.2022.121315. Epub 2022 May 3.
7
Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite.
Int J Syst Evol Microbiol. 2012 Feb;62(Pt 2):397-402. doi: 10.1099/ijs.0.031138-0. Epub 2011 Mar 25.
8
Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica.
Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):2375-2378. doi: 10.1099/ijs.0.63110-0.
9
Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates.
J Microbiol Methods. 2006 Sep;66(3):399-409. doi: 10.1016/j.mimet.2006.01.006. Epub 2006 Mar 2.

引用本文的文献

2
Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering.
Biosensors (Basel). 2024 Aug 1;14(8):375. doi: 10.3390/bios14080375.
3
Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications.
Molecules. 2023 Aug 16;28(16):6087. doi: 10.3390/molecules28166087.
5
Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy.
Nanomaterials (Basel). 2018 Sep 15;8(9):730. doi: 10.3390/nano8090730.
6
Review on SERS of Bacteria.
Biosensors (Basel). 2017 Nov 13;7(4):51. doi: 10.3390/bios7040051.
7
In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems.
ACS Nano. 2014 Dec 23;8(12):12175-84. doi: 10.1021/nn503826r. Epub 2014 Nov 17.

本文引用的文献

1
Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir.
J Appl Microbiol. 2012 Feb;112(2):363-71. doi: 10.1111/j.1365-2672.2011.05210.x. Epub 2012 Jan 3.
4
integrOmics: an R package to unravel relationships between two omics datasets.
Bioinformatics. 2009 Nov 1;25(21):2855-6. doi: 10.1093/bioinformatics/btp515. Epub 2009 Aug 25.
5
Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24.
J Proteome Res. 2009 Apr;8(4):1704-16. doi: 10.1021/pr800705f.
6
Characterisation and identification of bacteria using SERS.
Chem Soc Rev. 2008 May;37(5):931-6. doi: 10.1039/b705973f. Epub 2008 Mar 26.
7
Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
Appl Spectrosc. 2008 Mar;62(3):267-72. doi: 10.1366/000370208783759623.
8
Physiological heterogeneity in biofilms.
Nat Rev Microbiol. 2008 Mar;6(3):199-210. doi: 10.1038/nrmicro1838.
9
Convective assembly of bacteria for surface-enhanced Raman scattering.
Langmuir. 2008 Feb 5;24(3):894-901. doi: 10.1021/la702240q. Epub 2008 Jan 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验