Suppr超能文献

基于聚类和分类的方法,利用学习对基于区域的磁共振成像鼻咽癌病变进行分割。

Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering- and classification-based methods with learning.

机构信息

Information Engineering School, Nanchang University, China, No. 999, New Xuefu Road, Honggutan, Nanchang, Jiangxi Province, 330031, China.

出版信息

J Digit Imaging. 2013 Jun;26(3):472-82. doi: 10.1007/s10278-012-9520-4.

Abstract

In clinical diagnosis of nasopharyngeal carcinoma (NPC) lesion, clinicians are often required to delineate boundaries of NPC on a number of tumor-bearing magnetic resonance images, which is a tedious and time-consuming procedure highly depending on expertise and experience of clinicians. Computer-aided tumor segmentation methods (either contour-based or region-based) are necessary to alleviate clinicians' workload. For contour-based methods, a minimal user interaction to draw an initial contour inside or outside the tumor lesion for further curve evolution to match the tumor boundary is preferred, but parameters within most of these methods require manual adjustment, which is technically burdensome for clinicians without specific knowledge. Therefore, segmentation methods with a minimal user interaction as well as automatic parameters adjustment are often favored in clinical practice. In this paper, two region-based methods with parameters learning are introduced for NPC segmentation. Two hundred fifty-three MRI slices containing NPC lesion are utilized for evaluating the performance of the two methods, as well as being compared with other similar region-based tumor segmentation methods. Experimental results demonstrate the superiority of adopting learning in the two introduced methods. Also, they achieve comparable segmentation performance from a statistical point of view.

摘要

在鼻咽癌(NPC)病变的临床诊断中,临床医生通常需要在许多载瘤磁共振图像上描绘 NPC 的边界,这是一项繁琐且耗时的工作,高度依赖于临床医生的专业知识和经验。因此,需要计算机辅助肿瘤分割方法(基于轮廓或基于区域)来减轻临床医生的工作量。对于基于轮廓的方法,首选的方法是用户只需进行最小的交互操作,在肿瘤病变内部或外部绘制初始轮廓,然后进一步进行曲线演化以匹配肿瘤边界,但这些方法中的大多数参数都需要手动调整,这对于没有特定知识的临床医生来说技术上负担过重。因此,在临床实践中,通常更倾向于使用用户交互最小且自动参数调整的分割方法。本文介绍了两种具有参数学习的基于区域的 NPC 分割方法。利用 253 个包含 NPC 病变的 MRI 切片来评估这两种方法的性能,并与其他类似的基于区域的肿瘤分割方法进行比较。实验结果表明,在这两种介绍的方法中采用学习的优越性。此外,从统计学角度来看,它们的分割性能相当。

相似文献

6
Nasopharyngeal carcinoma segmentation using a region growing technique.鼻咽癌的区域生长技术分割。
Int J Comput Assist Radiol Surg. 2012 May;7(3):413-22. doi: 10.1007/s11548-011-0629-6. Epub 2011 Jun 14.

引用本文的文献

本文引用的文献

1
Snakes, shapes, and gradient vector flow.蛇形、形状与梯度向量流。
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
2
The enigmatic epidemiology of nasopharyngeal carcinoma.鼻咽癌的神秘流行病学。
Cancer Epidemiol Biomarkers Prev. 2006 Oct;15(10):1765-77. doi: 10.1158/1055-9965.EPI-06-0353.
3
Global cancer statistics, 2002.2002年全球癌症统计数据。
CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108. doi: 10.3322/canjclin.55.2.74.
4
Segmentation of nasopharyngeal carcinoma (NPC) lesions in MR images.磁共振成像(MR)图像中鼻咽癌(NPC)病变的分割
Int J Radiat Oncol Biol Phys. 2005 Feb 1;61(2):608-20. doi: 10.1016/j.ijrobp.2004.09.024.
10
Bounds on error expectation for support vector machines.支持向量机的误差期望界限
Neural Comput. 2000 Sep;12(9):2013-36. doi: 10.1162/089976600300015042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验