Information Engineering School, Nanchang University, China, No. 999, New Xuefu Road, Honggutan, Nanchang, Jiangxi Province, 330031, China.
J Digit Imaging. 2013 Jun;26(3):472-82. doi: 10.1007/s10278-012-9520-4.
In clinical diagnosis of nasopharyngeal carcinoma (NPC) lesion, clinicians are often required to delineate boundaries of NPC on a number of tumor-bearing magnetic resonance images, which is a tedious and time-consuming procedure highly depending on expertise and experience of clinicians. Computer-aided tumor segmentation methods (either contour-based or region-based) are necessary to alleviate clinicians' workload. For contour-based methods, a minimal user interaction to draw an initial contour inside or outside the tumor lesion for further curve evolution to match the tumor boundary is preferred, but parameters within most of these methods require manual adjustment, which is technically burdensome for clinicians without specific knowledge. Therefore, segmentation methods with a minimal user interaction as well as automatic parameters adjustment are often favored in clinical practice. In this paper, two region-based methods with parameters learning are introduced for NPC segmentation. Two hundred fifty-three MRI slices containing NPC lesion are utilized for evaluating the performance of the two methods, as well as being compared with other similar region-based tumor segmentation methods. Experimental results demonstrate the superiority of adopting learning in the two introduced methods. Also, they achieve comparable segmentation performance from a statistical point of view.
在鼻咽癌(NPC)病变的临床诊断中,临床医生通常需要在许多载瘤磁共振图像上描绘 NPC 的边界,这是一项繁琐且耗时的工作,高度依赖于临床医生的专业知识和经验。因此,需要计算机辅助肿瘤分割方法(基于轮廓或基于区域)来减轻临床医生的工作量。对于基于轮廓的方法,首选的方法是用户只需进行最小的交互操作,在肿瘤病变内部或外部绘制初始轮廓,然后进一步进行曲线演化以匹配肿瘤边界,但这些方法中的大多数参数都需要手动调整,这对于没有特定知识的临床医生来说技术上负担过重。因此,在临床实践中,通常更倾向于使用用户交互最小且自动参数调整的分割方法。本文介绍了两种具有参数学习的基于区域的 NPC 分割方法。利用 253 个包含 NPC 病变的 MRI 切片来评估这两种方法的性能,并与其他类似的基于区域的肿瘤分割方法进行比较。实验结果表明,在这两种介绍的方法中采用学习的优越性。此外,从统计学角度来看,它们的分割性能相当。