Suppr超能文献

基于双模态PET-CT图像使用带辅助路径的全卷积网络进行鼻咽癌自动分割

Automatic Nasopharyngeal Carcinoma Segmentation Using Fully Convolutional Networks with Auxiliary Paths on Dual-Modality PET-CT Images.

作者信息

Zhao Lijun, Lu Zixiao, Jiang Jun, Zhou Yujia, Wu Yi, Feng Qianjin

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.

出版信息

J Digit Imaging. 2019 Jun;32(3):462-470. doi: 10.1007/s10278-018-00173-0.

Abstract

Nasopharyngeal carcinoma (NPC) is prevalent in certain areas, such as South China, Southeast Asia, and the Middle East. Radiation therapy is the most efficient means to treat this malignant tumor. Positron emission tomography-computed tomography (PET-CT) is a suitable imaging technique to assess this disease. However, the large amount of data produced by numerous patients causes traditional manual delineation of tumor contour, a basic step for radiotherapy, to become time-consuming and labor-intensive. Thus, the demand for automatic and credible segmentation methods to alleviate the workload of radiologists is increasing. This paper presents a method that uses fully convolutional networks with auxiliary paths to achieve automatic segmentation of NPC on PET-CT images. This work is the first to segment NPC using dual-modality PET-CT images. This technique is identical to what is used in clinical practice and offers considerable convenience for subsequent radiotherapy. The deep supervision introduced by auxiliary paths can explicitly guide the training of lower layers, thus enabling these layers to learn more representative features and improve the discriminative capability of the model. Results of threefold cross-validation with a mean dice score of 87.47% demonstrate the efficiency and robustness of the proposed method. The method remarkably outperforms state-of-the-art methods in NPC segmentation. We also validated by experiments that the registration process among different subjects and the auxiliary paths strategy are considerably useful techniques for learning discriminative features and improving segmentation performance.

摘要

鼻咽癌(NPC)在某些地区较为常见,如中国南方、东南亚和中东地区。放射治疗是治疗这种恶性肿瘤最有效的方法。正电子发射断层扫描-计算机断层扫描(PET-CT)是评估该疾病的一种合适的成像技术。然而,众多患者产生的大量数据使得肿瘤轮廓的传统手动勾画(放射治疗的一个基本步骤)变得耗时且费力。因此,对自动且可靠的分割方法以减轻放射科医生工作量的需求日益增加。本文提出了一种使用带有辅助路径的全卷积网络在PET-CT图像上实现鼻咽癌自动分割的方法。这项工作是首次使用双模态PET-CT图像对鼻咽癌进行分割。该技术与临床实践中使用的技术相同,为后续的放射治疗提供了极大的便利。辅助路径引入的深度监督可以明确地指导较低层的训练,从而使这些层能够学习到更具代表性的特征并提高模型的判别能力。三重交叉验证的结果显示平均骰子系数得分为87.47%,证明了所提方法的有效性和稳健性。该方法在鼻咽癌分割方面显著优于现有最先进的方法。我们还通过实验验证了不同受试者之间的配准过程和辅助路径策略是用于学习判别特征和提高分割性能的非常有用的技术。

相似文献

2
3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning.
Comput Med Imaging Graph. 2019 Oct;77:101644. doi: 10.1016/j.compmedimag.2019.101644. Epub 2019 Jul 31.
3
TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner.
Comput Biol Med. 2022 Sep;148:105869. doi: 10.1016/j.compbiomed.2022.105869. Epub 2022 Jul 21.
5
Computer-aided diagnosis and regional segmentation of nasopharyngeal carcinoma based on multi-modality medical images.
Int J Comput Assist Radiol Surg. 2021 Jun;16(6):871-882. doi: 10.1007/s11548-021-02351-y. Epub 2021 Mar 29.
7
Diffuse large B-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion.
Med Phys. 2021 Jul;48(7):3665-3678. doi: 10.1002/mp.14847. Epub 2021 Jun 22.
9
MMCA-NET: A Multimodal Cross Attention Transformer Network for Nasopharyngeal Carcinoma Tumor Segmentation Based on a Total-Body PET/CT System.
IEEE J Biomed Health Inform. 2024 Sep;28(9):5447-5458. doi: 10.1109/JBHI.2024.3405993. Epub 2024 Sep 5.

引用本文的文献

2
A Review of Artificial Intelligence Application for Radiotherapy.
Dose Response. 2024 Jun 20;22(2):15593258241263687. doi: 10.1177/15593258241263687. eCollection 2024 Apr-Jun.
5
BSMM-Net: Multi-modal neural network based on bilateral symmetry for nasopharyngeal carcinoma segmentation.
Front Hum Neurosci. 2023 Jan 10;16:1068713. doi: 10.3389/fnhum.2022.1068713. eCollection 2022.
6
Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):213-223. doi: 10.1109/trpms.2020.3025071. Epub 2020 Sep 21.
8
Multi-scale brain tumor segmentation combined with deep supervision.
Int J Comput Assist Radiol Surg. 2022 Mar;17(3):561-568. doi: 10.1007/s11548-021-02515-w. Epub 2021 Dec 11.

本文引用的文献

2
3D deeply supervised network for automated segmentation of volumetric medical images.
Med Image Anal. 2017 Oct;41:40-54. doi: 10.1016/j.media.2017.05.001. Epub 2017 May 8.
3
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal. 2017 Feb;36:61-78. doi: 10.1016/j.media.2016.10.004. Epub 2016 Oct 29.
4
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
5
Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
IEEE Trans Med Imaging. 2016 May;35(5):1229-1239. doi: 10.1109/TMI.2016.2528821. Epub 2016 Feb 11.
6
Global trends in incidence and mortality of nasopharyngeal carcinoma.
Cancer Lett. 2016 Apr 28;374(1):22-30. doi: 10.1016/j.canlet.2016.01.040. Epub 2016 Jan 29.
7
Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2968-72. doi: 10.1109/EMBC.2015.7319015.
8
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.
IEEE Trans Image Process. 2015 Dec;24(12):5854-67. doi: 10.1109/TIP.2015.2488902. Epub 2015 Oct 8.
9
Optimal co-segmentation of tumor in PET-CT images with context information.
IEEE Trans Med Imaging. 2013 Sep;32(9):1685-97. doi: 10.1109/TMI.2013.2263388. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验