Suppr超能文献

一种计算神经退行性疾病进展评分方法:以阿尔茨海默病神经影像学倡议队列为例的方法和结果。

A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort.

机构信息

Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Neuroimage. 2012 Nov 15;63(3):1478-86. doi: 10.1016/j.neuroimage.2012.07.059. Epub 2012 Aug 3.

Abstract

While neurodegenerative diseases are characterized by steady degeneration over relatively long timelines, it is widely believed that the early stages are the most promising for therapeutic intervention, before irreversible neuronal loss occurs. Developing a therapeutic response requires a precise measure of disease progression. However, since the early stages are for the most part asymptomatic, obtaining accurate measures of disease progression is difficult. Longitudinal databases of hundreds of subjects observed during several years with tens of validated biomarkers are becoming available, allowing the use of computational methods. We propose a widely applicable statistical methodology for creating a disease progression score (DPS), using multiple biomarkers, for subjects with a neurodegenerative disease. The proposed methodology was evaluated for Alzheimer's disease (AD) using the publicly available AD Neuroimaging Initiative (ADNI) database, yielding an Alzheimer's DPS or ADPS score for each subject and each time-point in the database. In addition, a common description of biomarker changes was produced allowing for an ordering of the biomarkers. The Rey Auditory Verbal Learning Test delayed recall was found to be the earliest biomarker to become abnormal. The group of biomarkers comprising the volume of the hippocampus and the protein concentration amyloid beta and Tau were next in the timeline, and these were followed by three cognitive biomarkers. The proposed methodology thus has potential to stage individuals according to their state of disease progression relative to a population and to deduce common behaviors of biomarkers in the disease itself.

摘要

虽然神经退行性疾病的特征是在相对较长的时间内稳定退化,但人们普遍认为,在发生不可逆转的神经元丧失之前,早期阶段是最有希望进行治疗干预的。开发治疗反应需要对疾病进展进行精确测量。然而,由于早期阶段在很大程度上是无症状的,因此很难获得疾病进展的准确测量。具有数百个经过数年观察并具有数十个经过验证的生物标志物的纵向数据库正在变得可用,从而允许使用计算方法。我们提出了一种广泛适用的统计方法,用于使用多个生物标志物为患有神经退行性疾病的受试者创建疾病进展评分 (DPS)。使用公开的 AD 神经影像学倡议 (ADNI) 数据库评估了该方法在阿尔茨海默病 (AD) 中的应用,为数据库中的每个受试者和每个时间点生成了阿尔茨海默病 DPS 或 ADPS 评分。此外,还生成了生物标志物变化的通用描述,允许对生物标志物进行排序。Rey 听觉言语学习测试延迟回忆被发现是最早出现异常的生物标志物。接下来是包含海马体体积和蛋白质浓度β淀粉样蛋白和 Tau 的一组生物标志物,然后是三个认知生物标志物。因此,该方法有可能根据个体相对于人群的疾病进展状态对其进行分期,并推断疾病本身中生物标志物的常见行为。

相似文献

1
A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort.
Neuroimage. 2012 Nov 15;63(3):1478-86. doi: 10.1016/j.neuroimage.2012.07.059. Epub 2012 Aug 3.
2
A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set.
Neurobiol Aging. 2015 Jan;36 Suppl 1:S178-84. doi: 10.1016/j.neurobiolaging.2014.03.043. Epub 2014 Oct 17.
3
Disease progression timeline estimation for Alzheimer's disease using discriminative event based modeling.
Neuroimage. 2019 Feb 1;186:518-532. doi: 10.1016/j.neuroimage.2018.11.024. Epub 2018 Nov 22.
4
Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations.
Neuroimage. 2021 Feb 15;227:117646. doi: 10.1016/j.neuroimage.2020.117646. Epub 2020 Dec 16.
5
Core candidate neurochemical and imaging biomarkers of Alzheimer's disease.
Alzheimers Dement. 2008 Jan;4(1):38-48. doi: 10.1016/j.jalz.2007.08.006. Epub 2007 Dec 21.
6
Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects.
Alzheimers Dement. 2010 May;6(3):230-8. doi: 10.1016/j.jalz.2010.03.008.
8
Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study.
PLoS Med. 2018 Jan 25;15(1):e1002482. doi: 10.1371/journal.pmed.1002482. eCollection 2018 Jan.
9
Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum.
Brain. 2021 Feb 12;144(1):325-339. doi: 10.1093/brain/awaa399.
10
Subtle Cognitive Decline and Biomarker Staging in Preclinical Alzheimer's Disease.
J Alzheimers Dis. 2015;47(1):231-42. doi: 10.3233/JAD-150128.

引用本文的文献

1
Estimating the preclinical Alzheimer's disease course with multimodal data.
Alzheimers Dement. 2025 Sep;21(9):e70658. doi: 10.1002/alz.70658.
3
Cross-Dataset Evaluation of Dementia Longitudinal Progression Prediction Models.
Hum Brain Mapp. 2025 Aug 1;46(11):e70280. doi: 10.1002/hbm.70280.
5
7
A data-driven model of disability progression in progressive multiple sclerosis.
Brain Commun. 2024 Dec 3;7(1):fcae434. doi: 10.1093/braincomms/fcae434. eCollection 2025.
8
Cross-dataset Evaluation of Dementia Longitudinal Progression Prediction Models.
medRxiv. 2025 Jun 11:2024.11.18.24317513. doi: 10.1101/2024.11.18.24317513.
10
MAPPING ALZHEIMER'S DISEASE PSEUDO-PROGRESSION WITH MULTIMODAL BIOMARKER TRAJECTORY EMBEDDINGS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635249. Epub 2024 Aug 22.

本文引用的文献

1
Imaging biomarkers in Parkinson's disease.
Prog Neurobiol. 2011 Dec;95(4):614-28. doi: 10.1016/j.pneurobio.2011.08.009. Epub 2011 Aug 30.
2
The dynamics of cortical and hippocampal atrophy in Alzheimer disease.
Arch Neurol. 2011 Aug;68(8):1040-8. doi: 10.1001/archneurol.2011.167.
3
Evidence for ordering of Alzheimer disease biomarkers.
Arch Neurol. 2011 Dec;68(12):1526-35. doi: 10.1001/archneurol.2011.183. Epub 2011 Aug 8.
4
An event-based disease progression model and its application to familial Alzheimer's disease.
Inf Process Med Imaging. 2011;22:748-59. doi: 10.1007/978-3-642-22092-0_61.
5
Quantifying the pathophysiological timeline of Alzheimer's disease.
J Alzheimers Dis. 2011;26(4):745-53. doi: 10.3233/JAD-2011-110551.
7
Towards a neuroimaging biomarker for amyotrophic lateral sclerosis.
Lancet Neurol. 2011 May;10(5):400-3. doi: 10.1016/S1474-4422(11)70049-7.
8
Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates.
Am J Geriatr Psychiatry. 2011 Nov;19(11):951-60. doi: 10.1097/JGP.0b013e3182107c69.
9
Independent component analysis-based classification of Alzheimer's disease MRI data.
J Alzheimers Dis. 2011;24(4):775-83. doi: 10.3233/JAD-2011-101371.
10
Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population.
Neuroimage. 2011 Mar 15;55(2):574-89. doi: 10.1016/j.neuroimage.2010.10.081. Epub 2010 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验