Suppr超能文献

利用多模态生物标志物轨迹嵌入映射阿尔茨海默病假性进展

MAPPING ALZHEIMER'S DISEASE PSEUDO-PROGRESSION WITH MULTIMODAL BIOMARKER TRAJECTORY EMBEDDINGS.

作者信息

Takemaru Lina, Yang Shu, Wu Ruiming, He Bing, Davtzikos Christos, Yan Jingwen, Shen Li

机构信息

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

School of Informatics and Computing, Indiana University, Indianapolis, IN, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635249. Epub 2024 Aug 22.

Abstract

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive degeneration and motor impairment, affecting millions worldwide. Mapping the progression of AD is crucial for early detection of loss of brain function, timely intervention, and development of effective treatments. However, accurate measurements of disease progression are still challenging at present. This study presents a novel approach to understanding the heterogeneous pathways of AD through longitudinal biomarker data from medical imaging and other modalities. We propose an analytical pipeline adopting two popular machine learning methods from the single-cell transcriptomics domain, PHATE and Slingshot, to project multimodal biomarker trajectories to a low-dimensional space. These embeddings serve as our pseudotime estimates. We applied this pipeline to the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to align longitudinal data across individuals at various disease stages. Our approach mirrors the technique used to cluster single-cell data into cell types based on developmental timelines. Our pseudotime estimates revealed distinct patterns of disease evolution and biomarker changes over time, providing a deeper understanding of the temporal dynamics of AD. The results show the potential of the approach in the clinical domain of neurodegenerative diseases, enabling more precise disease modeling and early diagnosis.

摘要

阿尔茨海默病(AD)是一种神经退行性疾病,其特征为进行性认知衰退和运动障碍,影响着全球数百万人。描绘AD的进展对于早期发现脑功能丧失、及时干预以及开发有效治疗方法至关重要。然而,目前准确测量疾病进展仍然具有挑战性。本研究提出了一种新方法,通过医学成像和其他模态的纵向生物标志物数据来理解AD的异质性途径。我们提出了一个分析流程,采用单细胞转录组学领域的两种流行机器学习方法,即PHATE和Slingshot,将多模态生物标志物轨迹投影到低维空间。这些嵌入作为我们的伪时间估计。我们将此流程应用于阿尔茨海默病神经成像倡议(ADNI)数据集,以对齐不同疾病阶段个体的纵向数据。我们的方法类似于基于发育时间线将单细胞数据聚类为细胞类型所使用的技术。我们的伪时间估计揭示了疾病随时间演变的不同模式以及生物标志物的变化,从而更深入地了解了AD的时间动态。结果显示了该方法在神经退行性疾病临床领域的潜力,能够实现更精确的疾病建模和早期诊断。

相似文献

本文引用的文献

1
2023 Alzheimer's disease facts and figures.2023 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2023 Apr;19(4):1598-1695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.
4
Visualizing structure and transitions in high-dimensional biological data.高维生物数据中的结构和转变可视化。
Nat Biotechnol. 2019 Dec;37(12):1482-1492. doi: 10.1038/s41587-019-0336-3. Epub 2019 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验