Suppr超能文献

直肠和耳部核心体温测量在高热、运动个体中的比较:一项荟萃分析。

Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis.

机构信息

Korey Stringer Institute, Department of Kinesiology, University of Connecticut, 2095 Hillside Road, Storrs, CT 06269-1110, USA.

出版信息

J Athl Train. 2012 May-Jun;47(3):329-38. doi: 10.4085/1062-6050-47.3.09.

Abstract

OBJECTIVE

To compare mean differences in core body temperature (T(core)) as assessed via rectal thermometry (T(re)) and aural thermometry (T(au)) in hyperthermic exercising individuals.

DATA SOURCES

PubMed, Ovid MEDLINE, SPORTDiscus, CINAHL, and Cochrane Library in English from the earliest entry points to August 2009 using the search terms aural, core body temperature, core temperature, exercise, rectal, temperature, thermistor, thermometer, thermometry, and tympanic. Study Selection: Original research articles that met these criteria were included: (1) concurrent measurement of T(re) and T(au) in participants during exercise, (2) minimum mean temperature that reached 38°C by at least 1 technique during or after exercise, and (3) report of means, standard deviations, and sample sizes.

DATA EXTRACTION

Nine articles were included, and 3 independent reviewers scored these articles using the Physiotherapy Evidence Database (PEDro) scale (mean = 5.1 ± 0.4). Data were divided into time periods pre-exercise, during exercise (30 to 180 minutes), and postexercise, as well as T(re) ranges <37.99°C, 38.00°C to 38.99°C, and >39.00°C. Means and standard deviations for both measurement techniques were provided at all time intervals reported. Meta-analysis was performed to determine pooled and weighted mean differences between T(re) and T(au).

DATA SYNTHESIS

The T(re) was conclusively higher than the T(au) pre-exercise (mean difference [MD] = 0.27°C, 95% confidence interval [CI] = 0.15°C, 0.39°C), during exercise (MD = 0.96°C, 95% CI = 0.84°C, 1.08°C), and postexercise (MD = 0.71°C, 95% CI = 0.65°C, 0.78°C). As T(re) measures increased, the magnitude of difference between the techniques also increased with an MD of 0.59°C (95% CI = 0.53°C, 0.65°C) when T(re) was <38°C; 0.79°C (95% CI = 0.72°C, 0.86°C) when T(re) was between 38.0°C and 38.99°C; and 1.72°C (95% CI = 1.54°, 1.91°C) when T(re) was >39.0°C.

CONCLUSIONS

The T(re) was consistently greater than T(au) when T(core) was measured in hyperthermic individuals before, during, and postexercise. As T(core) increased, T(au) appeared to underestimate T(core) as determined by T(re). Clinicians should be aware of this critical difference in temperature magnitude between these measurement techniques when assessing T(core) in hyperthermic individuals during or postexercise.

摘要

目的

比较高温运动个体直肠测温(T(re))和耳温测温(T(au))评估核心体温(T(core))的均值差异。

数据来源

PubMed、Ovid MEDLINE、SPORTDiscus、CINAHL 和 Cochrane Library 数据库,英文文献检索时间截至 2009 年 8 月,使用的检索词为耳、核心体温、核心温度、运动、直肠、温度、热敏电阻、温度计、测温法、鼓膜。

研究选择

纳入标准为:(1)在运动过程中同时测量 T(re)和 T(au);(2)至少有 1 种技术在运动过程中或之后达到 38°C 及以上的最低平均温度;(3)报告平均值、标准差和样本量。

数据提取

共纳入 9 篇文章,3 名独立评审员使用物理治疗证据数据库(PEDro)量表(平均=5.1±0.4)对这些文章进行评分。数据分为运动前、运动中(30 至 180 分钟)和运动后,以及 T(re)范围<37.99°C、38.00°C 至 38.99°C 和>39.00°C。报告了所有报告时间间隔的两种测量技术的均值和标准差。对 T(re)和 T(au)之间的汇总和加权均值差异进行了荟萃分析。

数据综合

T(re)在运动前(差值=0.27°C,95%置信区间[CI]:0.15°C,0.39°C)、运动中(差值=0.96°C,95% CI:0.84°C,1.08°C)和运动后(差值=0.71°C,95% CI:0.65°C,0.78°C)均显著高于 T(au)。随着 T(re)测量值的增加,两种技术之间的差异程度也随之增加,当 T(re)<38°C 时差值为 0.59°C(95% CI:0.53°C,0.65°C);当 T(re)在 38.0°C 到 38.99°C 之间时差值为 0.79°C(95% CI:0.72°C,0.86°C);当 T(re)>39.0°C 时差值为 1.72°C(95% CI:1.54°C,1.91°C)。

结论

在高温个体运动前、运动中和运动后测量核心体温时,T(re)始终大于 T(au)。随着核心体温的升高,T(au)似乎低估了 T(re)所测量的核心体温。临床医生在评估高温运动个体的核心体温时,应注意这两种测量技术之间的温度差异。

相似文献

2
Is oral temperature an accurate measurement of deep body temperature? A systematic review.
J Athl Train. 2011 Sep-Oct;46(5):566-73. doi: 10.4085/1062-6050-46.5.566.
3
Validity and reliability of devices that assess body temperature during indoor exercise in the heat.
J Athl Train. 2009 Mar-Apr;44(2):124-35. doi: 10.4085/1062-6050-44.2.124.
4
Optimizing Cold-Water Immersion for Exercise-Induced Hyperthermia: An Evidence-Based Paper.
J Athl Train. 2016 Jun 2;51(6):500-1. doi: 10.4085/1062-6050-51.9.04. Epub 2016 Jul 21.
6
Accuracy of infrared ear thermometry in children: a meta-analysis and systematic review.
Clin Pediatr (Phila). 2014 Oct;53(12):1158-65. doi: 10.1177/0009922814536774. Epub 2014 May 30.
7
Temporal artery thermometry in children younger than 5 years: a comparison with rectal thermometry.
Pediatr Emerg Care. 2014 Dec;30(12):867-70. doi: 10.1097/PEC.0000000000000289.
8
A three-compartment thermometry model for the improved estimation of changes in body heat content.
Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R167-75. doi: 10.1152/ajpregu.00338.2006. Epub 2006 Aug 24.
9
Accuracy of infrared ear thermometry in adult patients.
Intensive Care Med. 1997 Jan;23(1):100-5. doi: 10.1007/s001340050297.
10
Safe cooling limits from exercise-induced hyperthermia.
Eur J Appl Physiol. 2006 Mar;96(4):434-45. doi: 10.1007/s00421-005-0063-y. Epub 2005 Dec 3.

引用本文的文献

1
[Suspicion of heat illness? Prefer rectal over tympanic temperature measurement!].
Med Klin Intensivmed Notfmed. 2025 Feb;120(1):77-78. doi: 10.1007/s00063-024-01208-x. Epub 2024 Nov 8.
3
The roles of ACE I/D and R577X gene variants in heat acclimation.
Heliyon. 2024 Jun 15;10(12):e33172. doi: 10.1016/j.heliyon.2024.e33172. eCollection 2024 Jun 30.
5
Recommended water immersion duration for the field treatment of exertional heat stroke when rectal temperature is unavailable.
Eur J Appl Physiol. 2024 Feb;124(2):479-490. doi: 10.1007/s00421-023-05290-5. Epub 2023 Aug 8.
6
Comparison of Aural and Rectal Temperature in Dogs Presenting to an Emergency Room.
Vet Med (Auckl). 2023 Jul 26;14:125-131. doi: 10.2147/VMRR.S411935. eCollection 2023.
9
Whole genome transcriptomic reveals heat stroke molecular signatures in humans.
J Physiol. 2023 Jun;601(12):2407-2423. doi: 10.1113/JP284031. Epub 2023 Apr 5.
10
Recovery with a fan-cooling jacket after exposure to high solar radiation during exercise in hot outdoor environments.
Front Sports Act Living. 2023 Feb 13;5:1106882. doi: 10.3389/fspor.2023.1106882. eCollection 2023.

本文引用的文献

1
Core-temperature sensor ingestion timing and measurement variability.
J Athl Train. 2010 Nov-Dec;45(6):594-600. doi: 10.4085/1062-6050-45.6.594.
3
Validity and reliability of devices that assess body temperature during indoor exercise in the heat.
J Athl Train. 2009 Mar-Apr;44(2):124-35. doi: 10.4085/1062-6050-44.2.124.
4
Infrared tympanic thermometry in a hot environment.
Int J Sports Med. 2008 Sep;29(9):713-8. doi: 10.1055/s-2007-989417. Epub 2008 Jan 22.
6
American College of Sports Medicine position stand. Exertional heat illness during training and competition.
Med Sci Sports Exerc. 2007 Mar;39(3):556-72. doi: 10.1249/MSS.0b013e31802fa199.
7
The ingestible telemetric body core temperature sensor: a review of validity and exercise applications.
Br J Sports Med. 2007 Mar;41(3):126-33. doi: 10.1136/bjsm.2006.026344. Epub 2006 Dec 18.
8
The validity and reliability of intestinal temperature during intermittent running.
Med Sci Sports Exerc. 2006 Nov;38(11):1926-31. doi: 10.1249/01.mss.0000233800.69776.ef.
9
Exertional heat stroke in competitive athletes.
Curr Sports Med Rep. 2005 Dec;4(6):309-17. doi: 10.1097/01.csmr.0000306292.64954.da.
10
Effectiveness of aerobic exercise in adults living with HIV/AIDS: systematic review.
Med Sci Sports Exerc. 2004 Oct;36(10):1659-66. doi: 10.1249/01.mss.0000142404.28165.9b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验