Suppr超能文献

核心温度传感器摄入时间和测量变异性。

Core-temperature sensor ingestion timing and measurement variability.

机构信息

The University of Montana, Missoula, MT 59812-1825, USA.

出版信息

J Athl Train. 2010 Nov-Dec;45(6):594-600. doi: 10.4085/1062-6050-45.6.594.

Abstract

CONTEXT

Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events.

OBJECTIVE

To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise.

DESIGN

Crossover study.

SETTING

Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%.

PATIENTS OR OTHER PARTICIPANTS

Seven healthy, active participants (3 men, 4 women; age  =  27.0 ± 7.5 years, height  =  172.9 ± 6.8 cm, body mass  =  67.5 ± 6.1 kg, percentage body fat  =  12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)]  =  54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study.

INTERVENTION(S): Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise.

MAIN OUTCOME MEASURE(S): Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot.

RESULTS

Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1  =  38.3°C ± 0.2°C, P2  =  38.3°C ± 0.4°C).

CONCLUSIONS

We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.

摘要

背景

遥测核心温度监测作为一种在运动过程中监测核心温度的非侵入性手段,应用越来越广泛。

目的

确定在连续运动过程中,传感器摄入时间对核心温度连续测量的影响。

设计

交叉研究。

环境

室外土赛道,平均环境温度为 4.4°C±4.1°C,相对湿度为 74.1%±11.0%。

患者或其他参与者

7 名健康、活跃的参与者(3 名男性,4 名女性;年龄 27.0±7.5 岁,身高 172.9±6.8cm,体重 67.5±6.1kg,体脂百分比 12.7%±6.9%,峰值摄氧量[Vo(2peak)]54.4±6.9mL•kg⁻¹•min⁻¹)完成了研究。

干预措施

参与者进行了约 70%Vo(2peak)的 45 分钟运动试验。他们在运动前 24 小时(P1)和 40 分钟(P2)摄入核心温度传感器。

主要观察指标

参与者佩戴的无线数据记录仪连续记录核心温度(1 分钟间隔)。所有数据均采用 2 因素重复测量方差分析(试验×时间)、皮尔逊积矩相关和 Bland-Altman 图进行分析。

结果

在 P1 和 P2 之间进行了 15 次比较。时间的主要效应表明核心温度与初始温度相比有所升高。然而,我们没有发现试验或试验×时间交互的主要效应,这表明两个传感器之间的核心温度没有差异(P1=38.3°C±0.2°C,P2=38.3°C±0.4°C)。

结论

我们发现两个传感器的温度记录没有差异。这些结果表明,在寒冷条件下连续跑步时,假定的传感器位置(上或下胃肠道)不会明显改变核心温度的可靠和可重复测量的传输。

相似文献

1
Core-temperature sensor ingestion timing and measurement variability.
J Athl Train. 2010 Nov-Dec;45(6):594-600. doi: 10.4085/1062-6050-45.6.594.
2
Influence of hydration on physiological function and performance during trail running in the heat.
J Athl Train. 2010 Mar-Apr;45(2):147-56. doi: 10.4085/1062-6050-45.2.147.
3
Core temperature and metabolic responses after carbohydrate intake during exercise at 30 degrees C.
J Athl Train. 2008 Oct-Dec;43(6):585-91. doi: 10.4085/1062-6050-43.6.585.
4
Telemetry pill measurement of core temperature in humans during active heating and cooling.
Med Sci Sports Exerc. 1998 Mar;30(3):468-72. doi: 10.1097/00005768-199803000-00020.
5
Importance of airflow for physiologic and ergogenic effects of precooling.
J Athl Train. 2014 Sep-Oct;49(5):632-9. doi: 10.4085/1062-6050-49.3.27. Epub 2014 Aug 21.
6
Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion.
J Athl Train. 2011 Nov-Dec;46(6):592-9. doi: 10.4085/1062-6050-46.6.592.
9
CORE™ wearable sensor: Comparison against gastrointestinal temperature during cold water ingestion and a 5 km running time-trial.
J Therm Biol. 2023 Jul;115:103622. doi: 10.1016/j.jtherbio.2023.103622. Epub 2023 Jun 14.
10
Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia.
J Athl Train. 2016 Mar;51(3):252-7. doi: 10.4085/1062-6050-51.4.01. Epub 2016 Mar 4.

引用本文的文献

1
Retinal and cerebral hemodynamics redistribute to favor thermoregulation in response to passive environmental heating and heated exercise in humans.
Temperature (Austin). 2024 Oct 16;12(1):55-70. doi: 10.1080/23328940.2024.2411771. eCollection 2025.
2
Effect of Ischemic Preconditioning on Endurance Running Performance in the Heat.
J Sports Sci Med. 2024 Dec 1;23(4):799-811. doi: 10.52082/jssm.2024.799. eCollection 2024 Dec.
5
Local Passive Heat for the Treatment of Hypertension in Autonomic Failure.
J Am Heart Assoc. 2021 Apr 6;10(7):e018979. doi: 10.1161/JAHA.120.018979. Epub 2021 Mar 19.
6
Time perception and timed decision task performance during passive heat stress.
Temperature (Austin). 2020 Jun 16;8(1):53-63. doi: 10.1080/23328940.2020.1776925.
8
Thermal balance of spinal cord injured divers during cold water diving: A case control study.
Diving Hyperb Med. 2020 Sep 30;50(3):256-263. doi: 10.28920/dhm50.3.256-263.
9
Interaction of Exercise Intensity and Simulated Burn Injury Size on Thermoregulation.
Med Sci Sports Exerc. 2021 Feb 1;53(2):367-374. doi: 10.1249/MSS.0000000000002480.
10
Ingestible sensors correlate closely with peripheral temperature measurements in febrile patients.
J Infect. 2020 Feb;80(2):161-166. doi: 10.1016/j.jinf.2019.11.003. Epub 2019 Nov 14.

本文引用的文献

1
The effect of cool water ingestion on gastrointestinal pill temperature.
Med Sci Sports Exerc. 2008 Mar;40(3):523-8. doi: 10.1249/MSS.0b013e31815cc43e.
3
Temporal thermometry fails to track body core temperature during heat stress.
Med Sci Sports Exerc. 2007 Jul;39(7):1029-35. doi: 10.1249/mss.0b013e318050ca3e.
4
The validity and reliability of intestinal temperature during intermittent running.
Med Sci Sports Exerc. 2006 Nov;38(11):1926-31. doi: 10.1249/01.mss.0000233800.69776.ef.
8
"Deep-forehead" temperature correlates well with blood temperature.
Can J Anaesth. 2000 Oct;47(10):980-3. doi: 10.1007/BF03024869.
10
Measuring agreement in method comparison studies.
Stat Methods Med Res. 1999 Jun;8(2):135-60. doi: 10.1177/096228029900800204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验