Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
J Biol Inorg Chem. 2012 Dec;17(8):1151-8. doi: 10.1007/s00775-012-0928-6. Epub 2012 Aug 15.
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO(2) formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO(2) formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO(2) is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O(2) and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO(2) also depends on O(2) and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO(2) formation.
环境锰的全球循环需要细菌和真菌的催化才能形成 MnO(2),因为在环境条件下,非生物 Mn(II)氧化非常缓慢。来自几种细菌的遗传证据表明,多铜氧化酶(MCOs)是形成 MnO(2)所必需的。然而,MCO 催化单电子氧化,而 Mn(II)转化为 MnO(2)是一个两电子过程。焦磷酸盐 (PP) (一种 Mn(III)螯合剂)的捕获实验表明,当由 Mn 氧化细菌 Bacillus SG-1 的外孢囊介导时,Mn(III)是 Mn(II)氧化的中间产物。Mn(II)的反应取决于 O(2),并且被叠氮化钠抑制,与 MCO 催化一致。我们表明,随后 Mn(III)到 MnO(2)的转化也依赖于 O(2),并且被叠氮化钠抑制。因此,两个氧化步骤似乎都是 MCO 介导的,很可能是由同一种酶介导的,遗传证据表明该酶是 MnxG 基因产物。我们提出了一个模型,说明锰氧化酶活性位点如何组织以将连续的电子转移与多核 Mn(IV)配合物的形成耦合,作为 MnO(2)形成的前体。