Suppr超能文献

软骨再生中干细胞的分离、鉴定和分化。

Isolation, characterization, and differentiation of stem cells for cartilage regeneration.

机构信息

Center for Biomedical Engineering, Brown University, Providence, RI, USA.

出版信息

Ann Biomed Eng. 2012 Oct;40(10):2079-97. doi: 10.1007/s10439-012-0639-8. Epub 2012 Aug 21.

Abstract

The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.

摘要

组织工程的目标是为因损伤或疾病而受损的组织创建具有功能性的替代品。在许多情况下,受损组织无法提供有活力的细胞,这导致研究人员将干细胞作为一种可能的替代物。特别是软骨可能受益于干细胞的使用,因为该组织细胞数量少,自身无法有效修复。为了满足这一需求,研究人员正在研究几种多能干细胞来源的软骨生成能力,包括成体和胚胎外间充质干细胞(MSCs)、胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)。比较研究表明,每种细胞类型都有其优点和缺点,虽然直接比较比较困难,但已发表的数据表明,对于软骨再生而言,某些来源可能比其他来源更有前途。在这篇综述中,我们确定了目前从骨髓、脂肪、滑膜、肌肉和外周血中分离和软骨分化 MSCs 的方法,以及来自胚胎外组织、ESCs 和 iPSCs 的细胞的方法。此外,我们还评估了生长因子诱导的软骨生成,确定了每种干细胞类型使用的标准细胞因子混合物。我们还包括仅细胞(微球)和基于支架的研究,并讨论了体内结果。

相似文献

1
Isolation, characterization, and differentiation of stem cells for cartilage regeneration.
Ann Biomed Eng. 2012 Oct;40(10):2079-97. doi: 10.1007/s10439-012-0639-8. Epub 2012 Aug 21.
3
Induced pluripotent stem cells in cartilage tissue engineering: a literature review.
Biosci Rep. 2024 May 29;44(5). doi: 10.1042/BSR20232102.
4
Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.
Tissue Eng Part B Rev. 2012 Aug;18(4):301-11. doi: 10.1089/ten.TEB.2012.0002. Epub 2012 Apr 19.
6
Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors.
Stem Cell Res Ther. 2010 Oct 13;1(4):31. doi: 10.1186/scrt31.
8
Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration.
Biomaterials. 2012 Oct;33(29):7008-18. doi: 10.1016/j.biomaterials.2012.06.058. Epub 2012 Jul 19.
9
Comparative chondrogenesis of human cell sources in 3D scaffolds.
J Tissue Eng Regen Med. 2009 Jul;3(5):348-60. doi: 10.1002/term.169.
10
Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration.
Cell Transplant. 2016;25(3):449-61. doi: 10.3727/096368915X688641. Epub 2015 Jul 13.

引用本文的文献

2
Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering.
Heliyon. 2024 Jun 25;10(13):e33542. doi: 10.1016/j.heliyon.2024.e33542. eCollection 2024 Jul 15.
4
Women's contribution to stem cell research for osteoarthritis: an opinion paper.
Front Cell Dev Biol. 2023 Dec 19;11:1209047. doi: 10.3389/fcell.2023.1209047. eCollection 2023.
5
Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken.
Front Cell Dev Biol. 2022 Sep 2;10:940248. doi: 10.3389/fcell.2022.940248. eCollection 2022.
9
Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells.
Cell Tissue Res. 2021 Mar;383(3):1061-1075. doi: 10.1007/s00441-020-03315-5. Epub 2020 Nov 26.
10

本文引用的文献

1
RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.
PLoS One. 2012;7(6):e38833. doi: 10.1371/journal.pone.0038833. Epub 2012 Jun 19.
3
Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6.
Rheumatol Int. 2013 Jan;33(1):121-8. doi: 10.1007/s00296-011-2328-6. Epub 2012 Jan 12.
4
Growth factors and chondrogenic differentiation of mesenchymal stem cells.
Tissue Cell. 2012 Apr;44(2):69-73. doi: 10.1016/j.tice.2011.11.005. Epub 2011 Dec 18.
5
Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model.
J Biomed Mater Res A. 2012 Jan;100(1):180-7. doi: 10.1002/jbm.a.33248. Epub 2011 Oct 23.
6
Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine.
World Neurosurg. 2011 Sep-Oct;76(3-4):270-5. doi: 10.1016/j.wneu.2010.12.055.
7
Dermis isolated adult stem cells for cartilage tissue engineering.
Biomaterials. 2012 Jan;33(1):109-19. doi: 10.1016/j.biomaterials.2011.09.038. Epub 2011 Sep 28.
9
In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells.
Tissue Eng Part A. 2012 Jan;18(1-2):80-92. doi: 10.1089/ten.tea.2011.0103. Epub 2011 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验