Suppr超能文献

散射光谱成像可区分与手术切缘评估相关的组织中的乳腺病变。

Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment.

机构信息

Thayer School of Engineering, Dartmouth College Hanover, Lebanon, New Hampshire, USA.

出版信息

Clin Cancer Res. 2012 Nov 15;18(22):6315-25. doi: 10.1158/1078-0432.CCR-12-0136. Epub 2012 Aug 20.

Abstract

PURPOSE

A new approach to spectroscopic imaging was developed to detect and discriminate microscopic pathologies in resected breast tissues; diagnostic performance of the prototype system was tested in 27 tissues procured during breast conservative surgery.

EXPERIMENTAL DESIGN

A custom-built, scanning in situ spectroscopy platform sampled broadband reflectance from a 150-μm-diameter spot over a 1 × 1 cm(2) field using a dark field geometry and telecentric lens; the system was designed to balance sensitivity to cellular morphology and imaging the inherent diversity within tissue subtypes. Nearly 300,000 broadband spectra were parameterized using light scattering models and spatially dependent spectral signatures were interpreted using a cooccurrence matrix representation of image texture.

RESULTS

Local scattering changes distinguished benign from malignant pathologies with 94% accuracy, 93% sensitivity, 95% specificity, and 93% positive and 95% negative predictive values using a threshold-based classifier. Texture and shape features were important to optimally discriminate benign from malignant tissues, including pixel-to-pixel correlation, contrast and homogeneity, and the shape features of fractal dimension and Euler number. Analysis of the region-based diagnostic performance showed that spectroscopic image features from 1 × 1 mm(2) areas were diagnostically discriminant and enabled quantification of within-class tissue heterogeneities.

CONCLUSIONS

Localized scatter-imaging signatures detected by the scanning spectroscopy platform readily distinguished benign from malignant pathologies in surgical tissues and showed new spectral-spatial signatures of clinical breast pathologies.

摘要

目的

开发了一种新的光谱成象方法,以检测和区分切除的乳腺组织中的微观病变;在 27 块乳腺保乳手术获得的组织中测试了原型系统的诊断性能。

实验设计

定制的、原位扫描光谱平台采用暗场几何和远心透镜,从 150μm 直径的光斑中采集宽带反射率,在 1×1cm2 的区域内;该系统旨在平衡对细胞形态的敏感性和对组织亚型固有异质性的成像。使用光散射模型对近 300,000 个宽带光谱进行参数化,并使用图像纹理的共生矩阵表示来解释空间相关的光谱特征。

结果

使用基于阈值的分类器,局部散射变化可将良性和恶性病变区分开来,准确率为 94%,灵敏度为 93%,特异性为 95%,阳性预测值为 93%,阴性预测值为 95%。纹理和形状特征对于最佳区分良性和恶性组织很重要,包括像素间相关、对比度和均匀性,以及分形维数和欧拉数的形状特征。基于区域的诊断性能分析表明,来自 1×1mm2 区域的光谱图像特征具有诊断区分能力,并能够量化组织内的异质性。

结论

扫描光谱平台检测到的局部散射成像特征可轻易区分手术组织中的良性和恶性病变,并显示出临床乳腺病变的新光谱-空间特征。

相似文献

9
Real-time pathology to guide breast surgery: seeing alone is not believing.实时病理学指导乳腺手术:眼见未必为实。
Clin Cancer Res. 2012 Nov 15;18(22):6083-5. doi: 10.1158/1078-0432.CCR-12-2823. Epub 2012 Oct 10.

引用本文的文献

5
Light scattering methods for tissue diagnosis.用于组织诊断的光散射方法。
Optica. 2019 Apr 20;6(4):479-489. doi: 10.1364/optica.6.000479.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验