Pardo Arturo, Gutiérrez-Gutiérrez José A, Lihacova I, López-Higuera José M, Conde Olga M
Grupo de Ingeniería Fotónica, TEISA, Universidad de Cantabria, Avenida Los Castros S/N, 39006, Cantabria, Spain.
Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, Raina Blvd. 19, Riga, LV-1586, Latvia.
Biomed Opt Express. 2018 Nov 15;9(12):6283-6301. doi: 10.1364/BOE.9.006283. eCollection 2018 Dec 1.
Early detection and diagnosis is a must in secondary prevention of melanoma and other cancerous lesions of the skin. In this work, we present an online, reservoir-based, non-parametric estimation and classification model that allows for this functionality on pigmented lesions, such that detection thresholding can be tuned to maximize accuracy and/or minimize overall false negative rates. This system has been tested in a dataset consisting of 116 patients and a total of 124 hyperspectral images of nevi, raised nevi and melanomas, detecting up to 100% of the suspicious lesions at the expense of some false positives.
早期检测和诊断是黑色素瘤及其他皮肤癌性病变二级预防的必要措施。在本研究中,我们提出了一种基于在线储层的非参数估计和分类模型,该模型可对色素沉着病变实现此功能,从而可以调整检测阈值以最大化准确性和/或最小化总体假阴性率。该系统已在一个包含116名患者以及总共124张痣、隆起痣和黑色素瘤的高光谱图像的数据集上进行了测试,以一些假阳性为代价,检测出了高达100%的可疑病变。