Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Andhra Pradesh, India.
PLoS Pathog. 2012;8(8):e1002863. doi: 10.1371/journal.ppat.1002863. Epub 2012 Aug 16.
Fungal septicemia is an increasingly common complication of immunocompromised patients worldwide. Candida species are the leading cause of invasive mycoses with Candida glabrata being the second most frequently isolated Candida species from Intensive Care Unit patients. Despite its clinical importance, very little is known about the mechanisms that C. glabrata employs to survive the antimicrobial and immune response of the mammalian host. Here, to decipher the interaction of C. glabrata with the host immune cells, we have screened a library of 18,350 C. glabrata Tn7 insertion mutants for reduced survival in human THP-1 macrophages via signature-tagged mutagenesis approach. A total of 56 genes, belonging to diverse biological processes including chromatin organization and golgi vesicle transport, were identified which are required for survival and/or replication of C. glabrata in macrophages. We report for the first time that C. glabrata wild-type cells respond to the intracellular milieu of macrophage by modifying their chromatin structure and chromatin resistance to micrococcal nuclease digestion, altered epigenetic signature, decreased protein acetylation and increased cellular lysine deacetylase activity are the hall-marks of macrophage-internalized C. glabrata cells. Consistent with this, mutants defective in chromatin organization (Cgrsc3-aΔ, Cgrsc3-bΔ, Cgrsc3-aΔbΔ, Cgrtt109Δ) and DNA damage repair (Cgrtt107Δ, Cgsgs1Δ) showed attenuated virulence in the murine model of disseminated candidiasis. Further, genome-wide transcriptional profiling analysis on THP-1 macrophage-internalized yeasts revealed deregulation of energy metabolism in Cgrsc3-aΔ and Cgrtt109Δ mutants. Collectively, our findings establish chromatin remodeling as a central regulator of survival strategies which facilitates a reprogramming of cellular energy metabolism in macrophage-internalized C. glabrata cells and provide protection against DNA damage.
真菌性败血症是全球免疫功能低下患者日益常见的并发症。念珠菌属是侵袭性真菌感染的主要病原体,其中光滑念珠菌是重症监护病房患者分离出的第二常见念珠菌。尽管其具有重要的临床意义,但对于光滑念珠菌在哺乳动物宿主的抗菌和免疫反应中存活所采用的机制知之甚少。在这里,为了解析光滑念珠菌与宿主免疫细胞的相互作用,我们通过标记突变筛选法,从光滑念珠菌 Tn7 插入突变体文库中筛选了在人 THP-1 巨噬细胞中存活能力降低的突变体。总共鉴定了 56 个基因,这些基因属于多种生物学过程,包括染色质组织和高尔基体囊泡运输,它们对于光滑念珠菌在巨噬细胞中的存活和/或复制是必需的。我们首次报道,野生型光滑念珠菌细胞通过修饰其染色质结构和抵抗微球菌核酸酶消化的染色质抗性、改变表观遗传特征、降低蛋白质乙酰化和增加细胞赖氨酸去乙酰化酶活性来响应巨噬细胞内的细胞内环境。与此一致的是,在染色质组织(Cgrsc3-aΔ、Cgrsc3-bΔ、Cgrsc3-aΔbΔ、Cgrtt109Δ)和 DNA 损伤修复(Cgrtt107Δ、Cgsgs1Δ)缺陷的突变体中,在播散性念珠菌病的小鼠模型中表现出减弱的毒力。此外,在 THP-1 巨噬细胞内化酵母的全基因组转录谱分析中,发现 Cgrsc3-aΔ 和 Cgrtt109Δ 突变体的能量代谢失调。总的来说,我们的研究结果确立了染色质重塑作为生存策略的中心调节剂,有助于重塑巨噬细胞内化的光滑念珠菌细胞的细胞能量代谢,并提供对 DNA 损伤的保护。