Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Int J Nanomedicine. 2012;7:4459-72. doi: 10.2147/IJN.S33575. Epub 2012 Aug 13.
The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods.
In this study, using an H(2)O(2) process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors.
These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation.
The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces.
种植体表面的形貌可以作为附着细胞的有力信号提示,并能提高骨整合的质量。一系列使用各种方法制造的具有纳米结构的改良种植体表面已经被制备出来。
在这项研究中,我们使用 H2O2 工艺在钛表面上制造了两种具有不同尺寸的尺寸可控的锯齿状纳米结构。在不添加成骨化学因子的情况下,评估了这两种纳米锯齿结构对大鼠骨髓间充质干细胞(BMMSCs)的影响。
这些新的表面修饰并没有对细胞活力产生不利影响,并且大鼠 BMMSCs 在纳米锯齿结构表面的增殖能力比对照板上有更大的提高。此外,成骨相关基因和蛋白的上调表达表明纳米锯齿结构促进了大鼠 BMMSCs 的成骨细胞分化。重要的是,大的纳米锯齿结构导致了最大的细胞反应,包括增加的黏附、增殖和分化。
大鼠 BMMSCs 在纳米锯齿结构上增强的黏附、增殖和成骨分化能力表明,有可能在体内诱导改善骨-钛整合。我们的研究揭示了钛表面纳米锯齿结构对大鼠 BMMSCs 命运的关键作用,并为研究干细胞-纳米结构关系和改进生物医学植入物表面的相关设计提供了思路。