Suppr超能文献

β-羧体在 Synechococcus elongatus PCC 7942 外壳的结构决定因素:CcmK2、K3-K4、CcmO 和 CcmL 的作用。

Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL.

机构信息

Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

出版信息

PLoS One. 2012;7(8):e43871. doi: 10.1371/journal.pone.0043871. Epub 2012 Aug 22.

Abstract

Cyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO), whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2)-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2) conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets.

摘要

蓝藻的 CO2 固定作用由一种 CO2 浓缩机制支持,该机制通过饱和其首选底物 CO2 来提高光合作用,即核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)。CO2 浓缩的位置是一种称为羧化体的蛋白结合微区室,其中包含大多数(如果不是全部)细胞内的 RuBisCO。β 型羧化体的壳被认为由两个功能层组成,内层参与 RuBisCO 支架和碳酸氢盐脱水,外层具有对溶解溶质的选择性渗透性。在这里,从集胞藻 PCC 7942 中预测为β-羧化体外壳层功能的四个基因(ccmK2-4、ccmO)通过分析定义的遗传突变体进行了研究。ccmK2 和 ccmO 基因的缺失导致严重的高 CO2 依赖性突变体,具有异常的羧化体,而 ccmK3 或 ccmK4 的缺失导致具有野生型生理学和正常超微结构的细胞。然而,ccmK3-4 的串联缺失导致细胞具有野生型羧化体结构,但在低 CO2 条件下生理功能缺陷。这些结果揭示了该菌株β-羧化体外壳的最小结构决定因素:CcmK2、CcmO 和 CcmL。一组辅助蛋白需要完善现有外壳的功能:CcmK3 和 CcmK4。这些数据提出了β-羧化体面结构的模型,其中 CcmL 形成顶点,CcmK2 形成大部分面,CcmO 作为“拉链蛋白”,连接羧化体面的边缘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d2/3425506/df98dbf832e6/pone.0043871.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验