Srinivasan Rahul, Richards Christopher I, Dilworth Crystal, Moss Fraser J, Dougherty Dennis A, Lester Henry A
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Int J Mol Sci. 2012;13(8):10022-10040. doi: 10.3390/ijms130810022. Epub 2012 Aug 10.
We provide a theory for employing Förster resonance energy transfer (FRET) measurements to determine altered heteropentameric ion channel stoichiometries in intracellular compartments of living cells. We simulate FRET within nicotinic receptors (nAChRs) whose α4 and β2 subunits contain acceptor and donor fluorescent protein moieties, respectively, within the cytoplasmic loops. We predict FRET and normalized FRET (NFRET) for the two predominant stoichiometries, (α4)(3)(β2)(2)vs. (α4)(2)(β2)(3). Studying the ratio between FRET or NFRET for the two stoichiometries, minimizes distortions due to various photophysical uncertainties. Within a range of assumptions concerning the distance between fluorophores, deviations from plane pentameric geometry, and other asymmetries, the predicted FRET and NFRET for (α4)(3)(β2)(2) exceeds that of (α4)(2)(β2)(3). The simulations account for published data on transfected Neuro2a cells in which α4β2 stoichiometries were manipulated by varying fluorescent subunit cDNA ratios: NFRET decreased monotonically from (α4)(3)(β2)(2) stoichiometry to mostly (α4)(2)(β2)(3). The simulations also account for previous macroscopic and single-channel observations that pharmacological chaperoning by nicotine and cytisine increase the (α4)(2)(β2)(3) and (α4)(3)(β2)(2) populations, respectively. We also analyze sources of variability. NFRET-based monitoring of changes in subunit stoichiometry can contribute usefully to studies on Cys-loop receptors.
我们提出了一种理论,用于利用福斯特共振能量转移(FRET)测量来确定活细胞内细胞区室中异源五聚体离子通道化学计量的改变。我们模拟了烟碱型受体(nAChRs)内的FRET,其α4和β2亚基在细胞质环内分别含有受体和供体荧光蛋白部分。我们预测了两种主要化学计量(α4)(3)(β2)(2)与(α4)(2)(β2)(3)的FRET和归一化FRET(NFRET)。研究这两种化学计量的FRET或NFRET之间的比率,可将各种光物理不确定性引起的失真降至最低。在关于荧光团之间距离、偏离平面五聚体几何形状和其他不对称性的一系列假设范围内,(α4)(3)(β2)(2)的预测FRET和NFRET超过了(α4)(2)(β2)(3)。这些模拟解释了已发表的关于转染Neuro2a细胞的数据,其中通过改变荧光亚基cDNA比率来操纵α4β2化学计量:NFRET从(α4)(3)(β2)(2)化学计量单调下降至主要为(α4)(2)(β2)(3)。这些模拟还解释了先前的宏观和单通道观察结果,即尼古丁和金雀花碱的药理学伴侣作用分别增加了(α4)(2)(β2)(3)和(α4)(3)(β2)(2)群体。我们还分析了变异性的来源。基于NFRET监测亚基化学计量的变化可有效地促进对半胱氨酸环受体的研究。