Zhmurov Artem, Protopopova Anna D, Litvinov Rustem I, Zhukov Pavel, Mukhitov Alexander R, Weisel John W, Barsegov Valeri
Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation.
Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Structure. 2016 Nov 1;24(11):1907-1917. doi: 10.1016/j.str.2016.08.009. Epub 2016 Sep 29.
Fibrin is a filamentous network made in blood to stem bleeding; it forms when fibrinogen is converted into fibrin monomers that self-associate into oligomers and then to polymers. To gather structural insights into fibrin formation and properties, we combined high-resolution atomic force microscopy of fibrin(ogen) oligomers and molecular modeling of crystal structures of fibrin(ogen) and its fragments. We provided a structural basis for the intermolecular flexibility of single-stranded fibrin(ogen) oligomers and identified a hinge region at the D:D inter-monomer junction. Following computational reconstruction of the missing portions, we recreated the full-atomic structure of double-stranded fibrin oligomers that was validated by quantitative comparison with the experimental images. We characterized previously unknown intermolecular binding contacts at the D:D and D:E:D interfaces, which drive oligomerization and reinforce the intra- and inter-strand connections in fibrin besides the known knob-hole bonds. The atomic models provide valuable insights into the submolecular mechanisms of fibrin polymerization.
纤维蛋白是血液中形成的丝状网络,用于止血;当纤维蛋白原转化为纤维蛋白单体时形成,这些单体自缔合形成寡聚体,然后形成聚合物。为了深入了解纤维蛋白的形成和特性,我们结合了纤维蛋白(原)寡聚体的高分辨率原子力显微镜和纤维蛋白(原)及其片段晶体结构的分子建模。我们为单链纤维蛋白(原)寡聚体的分子间灵活性提供了结构基础,并在D:D单体间连接处确定了一个铰链区。在对缺失部分进行计算重建后,我们重建了双链纤维蛋白寡聚体的全原子结构,并通过与实验图像的定量比较进行了验证。我们表征了D:D和D:E:D界面处以前未知的分子间结合接触,这些接触驱动寡聚化,并除了已知的钮孔键之外,还加强了纤维蛋白中的链内和链间连接。这些原子模型为纤维蛋白聚合的亚分子机制提供了有价值的见解。