Suppr超能文献

用于结构研究的哺乳动物细胞膜蛋白的过表达

Overexpression of membrane proteins in mammalian cells for structural studies.

作者信息

Andréll Juni, Tate Christopher G

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

出版信息

Mol Membr Biol. 2013 Feb;30(1):52-63. doi: 10.3109/09687688.2012.703703. Epub 2012 Sep 11.

Abstract

The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.

摘要

由于过去几年设计出的一些创新型蛋白质工程和结晶策略,来自高等真核生物的整合膜蛋白结构数量正在稳步增加。然而,令人清醒的是,这些结构仅占哺乳动物基因组编码的膜蛋白总数的极小一部分。此外,迄今为止确定的结构是最易处理的膜蛋白,即那些使用杆状病毒表达系统在酵母或昆虫细胞中功能性表达且表达水平较高的膜蛋白。然而,一些在这些系统中表达效率低下的膜蛋白可以在哺乳动物细胞中以足够高的水平产生,从而进行结构测定。哺乳动物表达系统在结构生物学中是一种未充分利用的资源,是为结构研究生产功能完全正常的膜蛋白的有效途径。本综述将讨论使用多种病毒、组成型或诱导型表达系统在哺乳动物细胞中过表达脊椎动物膜蛋白的实例。

相似文献

1
Overexpression of membrane proteins in mammalian cells for structural studies.
Mol Membr Biol. 2013 Feb;30(1):52-63. doi: 10.3109/09687688.2012.703703. Epub 2012 Sep 11.
2
Functional expression of mammalian receptors and membrane channels in different cells.
J Struct Biol. 2007 Aug;159(2):179-93. doi: 10.1016/j.jsb.2007.01.014. Epub 2007 Feb 3.
3
Expression strategies for structural studies of eukaryotic membrane proteins.
Curr Opin Struct Biol. 2016 Jun;38:137-44. doi: 10.1016/j.sbi.2016.06.011. Epub 2016 Jun 27.
4
Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.
Methods Mol Biol. 2010;601:149-63. doi: 10.1007/978-1-60761-344-2_10.
5
Structural genomics on membrane proteins: the MePNet approach.
Curr Opin Drug Discov Devel. 2004 May;7(3):342-6.
6
Quality control in eukaryotic membrane protein overproduction.
J Mol Biol. 2014 Dec 12;426(24):4139-4154. doi: 10.1016/j.jmb.2014.10.012.
8
Heterologous expression of membrane proteins for structural analysis.
Methods Mol Biol. 2010;601:1-16. doi: 10.1007/978-1-60761-344-2_1.
9
Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter.
Biochim Biophys Acta. 2003 Feb 17;1610(1):141-53. doi: 10.1016/s0005-2736(02)00719-8.
10
Expression of membrane proteins in the eyes of transgenic Drosophila melanogaster.
Methods Enzymol. 2015;556:219-39. doi: 10.1016/bs.mie.2014.12.012. Epub 2015 Mar 6.

引用本文的文献

1
Protein Expression Platforms and the Challenges of Viral Antigen Production.
Vaccines (Basel). 2024 Nov 28;12(12):1344. doi: 10.3390/vaccines12121344.
2
DT-13 Mediates Ligand-Dependent Activation of PPARγ Response Elements In Vitro.
Biology (Basel). 2024 Dec 4;13(12):1015. doi: 10.3390/biology13121015.
3
Opportunities and challenges in design and optimization of protein function.
Nat Rev Mol Cell Biol. 2024 Aug;25(8):639-653. doi: 10.1038/s41580-024-00718-y. Epub 2024 Apr 2.
5
Meta-Analysis of the Expansion in the Field of Structural Biology of ABC Transporters.
Biodes Res. 2022 Sep 8;2022:9806979. doi: 10.34133/2022/9806979. eCollection 2022.
9
Vesicle-based artificial cells: materials, construction methods and applications.
Mater Horiz. 2022 Mar 7;9(3):892-907. doi: 10.1039/d1mh01431e.
10
Level of hM4D(Gi) DREADD Expression Determines Inhibitory and Neurotoxic Effects in the Hippocampus.
eNeuro. 2021 Nov 4;8(6). doi: 10.1523/ENEURO.0105-21.2021. Print 2021 Nov-Dec.

本文引用的文献

1
Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1.
Sci Rep. 2011;1:172. doi: 10.1038/srep00172. Epub 2011 Nov 28.
3
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):119-24. doi: 10.1073/pnas.1114089108. Epub 2011 Dec 23.
4
High throughput platforms for structural genomics of integral membrane proteins.
Curr Opin Struct Biol. 2011 Aug;21(4):517-22. doi: 10.1016/j.sbi.2011.07.001. Epub 2011 Jul 30.
5
Overproduction of human M₃ muscarinic acetylcholine receptor: an approach toward structural studies.
Biotechnol Prog. 2011 May-Jun;27(3):838-45. doi: 10.1002/btpr.615. Epub 2011 May 5.
6
Overcoming barriers to membrane protein structure determination.
Nat Biotechnol. 2011 Apr;29(4):335-40. doi: 10.1038/nbt.1833.
7
The structural basis of agonist-induced activation in constitutively active rhodopsin.
Nature. 2011 Mar 31;471(7340):656-60. doi: 10.1038/nature09795. Epub 2011 Mar 9.
9
Structures of membrane proteins.
Q Rev Biophys. 2010 Feb;43(1):65-158. doi: 10.1017/S0033583510000041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验