Suppr超能文献

信号网络模型——细胞生物学家能从中获得什么,又能给予什么。

Models of signalling networks - what cell biologists can gain from them and give to them.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

J Cell Sci. 2013 May 1;126(Pt 9):1913-21. doi: 10.1242/jcs.112045.

Abstract

Computational models of cell signalling are perceived by many biologists to be prohibitively complicated. Why do math when you can simply do another experiment? Here, we explain how conceptual models, which have been formulated mathematically, have provided insights that directly advance experimental cell biology. In the past several years, models have influenced the way we talk about signalling networks, how we monitor them, and what we conclude when we perturb them. These insights required wet-lab experiments but would not have arisen without explicit computational modelling and quantitative analysis. Today, the best modellers are cross-trained investigators in experimental biology who work closely with collaborators but also undertake experimental work in their own laboratories. Biologists would benefit by becoming conversant in core principles of modelling in order to identify when a computational model could be a useful complement to their experiments. Although the mathematical foundations of a model are useful to appreciate its strengths and weaknesses, they are not required to test or generate a worthwhile biological hypothesis computationally.

摘要

许多生物学家认为细胞信号的计算模型过于复杂。既然可以直接做另一个实验,为什么还要用数学呢?在这里,我们解释了数学公式化的概念模型如何提供了直接推动实验细胞生物学发展的见解。在过去的几年中,模型已经影响了我们讨论信号网络的方式、我们监测它们的方式以及在对其进行干扰时得出的结论。这些见解需要湿实验室实验,但如果没有明确的计算建模和定量分析,就不会出现这些见解。如今,最好的建模者是具有交叉训练背景的实验生物学调查人员,他们与合作者密切合作,但也在自己的实验室中开展实验工作。为了确定计算模型何时可以成为实验的有用补充,生物学家将从核心建模原理中受益。尽管模型的数学基础对于了解其优缺点很有用,但在计算上测试或产生有价值的生物学假设并不需要它们。

相似文献

引用本文的文献

2
Generating synthetic signaling networks for in silico modeling studies.生成用于计算机建模研究的合成信号网络。
J Theor Biol. 2024 Oct 7;593:111901. doi: 10.1016/j.jtbi.2024.111901. Epub 2024 Jul 14.

本文引用的文献

4
Parameter-free model discrimination criterion based on steady-state coplanarity.基于稳态共面性的无参数模型判别准则。
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15746-51. doi: 10.1073/pnas.1117073109. Epub 2012 Sep 11.
5
Modeling the latent dimensions of multivariate signaling datasets.对多元信号数据集的潜在维度进行建模。
Phys Biol. 2012 Aug;9(4):045004. doi: 10.1088/1478-3975/9/4/045004. Epub 2012 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验