Suppr超能文献

探讨神经氨酸酶突变体中扎那米韦耐药机制的分子动力学研究。

Exploring the mechanism of zanamivir resistance in a neuraminidase mutant: a molecular dynamics study.

机构信息

School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.

出版信息

PLoS One. 2012;7(9):e44057. doi: 10.1371/journal.pone.0044057. Epub 2012 Sep 6.

Abstract

It is critical to understand the molecular basis of the drug resistance of influenza viruses to efficiently treat this infectious disease. Recently, H1N1 strains of influenza A carrying a mutation of Q136K in neuraminidase were found. The new strain showed a strong Zanamivir neutralization effect. In this study, normal molecular dynamics simulations and metadynamics simulations were employed to explore the mechanism of Zanamivir resistance. The wild-type neuraminidase contained a 3(10) helix before the 150 loop, and there was interaction between the 150 and 430 loops. However, the helix and the interaction between the two loops were disturbed in the mutant protein due to interaction between K136 and nearby residues. Hydrogen-bond network analysis showed weakened interaction between the Zanamivir drug and E276/D151 on account of the electrostatic interaction between K136 and D151. Metadynamics simulations showed that the free energy landscape was different in the mutant than in the wild-type neuraminidase. Conformation with the global minimum of free energy for the mutant protein was different from the wild-type conformation. While the drug fit completely into the active site of the wild-type neuraminidase, it did not match the active site of the mutant variant. This study indicates that the altered hydrogen-bond network and the deformation of the 150 loop are the key factors in development of Zanamivir resistance. Furthermore, the Q136K mutation has a variable effect on conformation of different N1 variants, with conformation of the 1918 N1 variant being more profoundly affected than that of the other N1 variants studied in this paper. This observation warrants further experimental investigation.

摘要

了解流感病毒耐药性的分子基础对于有效治疗这种传染病至关重要。最近发现,甲型 H1N1 流感病毒的神经氨酸酶携带 Q136K 突变。新菌株表现出强烈的扎那米韦中和作用。在这项研究中,采用正常分子动力学模拟和元动力学模拟来探讨扎那米韦耐药的机制。野生型神经氨酸酶在 150 环之前包含一个 3(10)螺旋,并且 150 环和 430 环之间存在相互作用。然而,由于 K136 与附近残基的相互作用,突变蛋白中的螺旋和两个环之间的相互作用受到干扰。氢键网络分析表明,由于 K136 和 D151 之间的静电相互作用,扎那米韦药物与 E276/D151 之间的相互作用减弱。元动力学模拟表明,突变体中的自由能景观与野生型神经氨酸酶不同。突变蛋白的全局最小自由能构象与野生型构象不同。虽然药物完全适合野生型神经氨酸酶的活性部位,但它与突变型变体的活性部位不匹配。这项研究表明,改变的氢键网络和 150 环的变形是产生扎那米韦耐药性的关键因素。此外,Q136K 突变对不同 N1 变体的构象有不同的影响,1918 年 N1 变体的构象比本文研究的其他 N1 变体受到的影响更为显著。这一观察结果值得进一步的实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf4/3435372/019f71f24851/pone.0044057.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验