基于细胞的和活体的荧光蛋白的光谱分析用于多光子显微镜。
Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy.
机构信息
University of Michigan Medical School, Department of Radiology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200, USA.
出版信息
J Biomed Opt. 2012 Sep;17(9):96001. doi: 10.1117/1.JBO.17.9.096001.
Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.
用标记有荧光蛋白的细胞和亚细胞结构进行多光子显微镜检查是组织和活体动物中进行纵向成像研究的最先进技术。通过活体显微镜成功分析分离的细胞群体或信号事件需要将多光子激发波长与光谱上明显不同的荧光蛋白最佳配对。虽然之前的研究已经分析了分离的荧光蛋白的双光子吸收特性,但关于在活细胞和完整组织中表达的荧光蛋白的双光子激发和荧光发射特性的信息有限。多光子显微镜用于分析培养细胞和人乳腺癌细胞原位肿瘤异种移植中多种蓝色、绿色和红色荧光蛋白的荧光输出。结果表明,在活细胞中,常用的橙色和红色荧光蛋白可被 750 至 760nm 激光有效激发,从而可以在不改变激发波长的情况下用蓝色或青色蛋白进行双色成像研究。还表明,激发波长的微小增量变化会显著影响荧光蛋白的发射强度,这可用于使用单个激光波长优化多色成像。这些数据将指导用于多光谱双光子显微镜的最佳荧光蛋白选择。