The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK.
Neuroimage. 2013 Jan 1;64(6):388-98. doi: 10.1016/j.neuroimage.2012.09.014. Epub 2012 Sep 14.
In Kilner et al. [Kilner, J.M., Kiebel, S.J., Friston, K.J., 2005. Applications of random field theory to electrophysiology. Neurosci. Lett. 374, 174-178.] we described a fairly general analysis of induced responses-in electromagnetic brain signals-using the summary statistic approach and statistical parametric mapping. This involves localising induced responses-in peristimulus time and frequency-by testing for effects in time-frequency images that summarise the response of each subject to each trial type. Conventionally, these time-frequency summaries are estimated using post-hoc averaging of epoched data. However, post-hoc averaging of this sort fails when the induced responses overlap or when there are multiple response components that have variable timing within each trial (for example stimulus and response components associated with different reaction times). In these situations, it is advantageous to estimate response components using a convolution model of the sort that is standard in the analysis of fMRI time series. In this paper, we describe one such approach, based upon ordinary least squares deconvolution of induced responses to input functions encoding the onset of different components within each trial. There are a number of fundamental advantages to this approach: for example; (i) one can disambiguate induced responses to stimulus onsets and variably timed responses; (ii) one can test for the modulation of induced responses-over peristimulus time and frequency-by parametric experimental factors and (iii) one can gracefully handle confounds-such as slow drifts in power-by including them in the model. In what follows, we consider optimal forms for convolution models of induced responses, in terms of impulse response basis function sets and illustrate the utility of deconvolution estimators using simulated and real MEG data.
在 Kilner 等人的研究中 [Kilner, J.M., Kiebel, S.J., Friston, K.J., 2005. 应用随机场理论于电生理学. 神经科学快报. 374, 174-178],我们描述了一种相当通用的分析方法,即使用摘要统计方法和统计参数映射来分析电磁脑信号中的诱发响应。这涉及通过测试时间-频率图像中的效应来定位刺激后时间和频率的诱发响应,这些图像总结了每个被试对每种试验类型的反应。传统上,这些时间-频率摘要通过对分段数据进行事后平均来估计。然而,当诱发响应重叠或在每个试验中有多个具有可变时间的响应成分时(例如与不同反应时间相关的刺激和响应成分),这种事后平均会失败。在这些情况下,使用 fMRI 时间序列分析中标准的卷积模型来估计响应成分是有利的。在本文中,我们描述了一种这样的方法,它基于对输入函数的诱导响应的普通最小二乘反卷积,这些输入函数编码了每个试验中不同成分的起始。这种方法有许多基本优势:例如:(i)可以区分刺激起始和可变时间的响应的诱发响应;(ii)可以通过参数实验因素来测试诱导响应的调制,(iii)可以通过将它们包含在模型中,优雅地处理混杂因素,如功率的缓慢漂移。在接下来的内容中,我们将根据脉冲响应基函数集来考虑诱导响应的卷积模型的最优形式,并使用模拟和真实 MEG 数据来说明反卷积估计器的实用性。