Suppr超能文献

生物学与数学之间的交叉潮流:伪平台期爆发的余维数

CROSS-CURRENTS BETWEEN BIOLOGY AND MATHEMATICS: THE CODIMENSION OF PSEUDO-PLATEAU BURSTING.

作者信息

Osinga Hinke M, Sherman Arthur, Tsaneva-Atanasova Krasimira

机构信息

Bristol Centre for Applied Nonlinear Mathematics Department of Engineering Mathematics University of Bristol, Queen's Building, University Walk Bristol BS8 1TR, UK.

出版信息

Discrete Contin Dyn Syst Ser A. 2012 Aug;32(8):2853-2877. doi: 10.3934/dcds.2012.32.2853.

Abstract

A great deal of work has gone into classifying bursting oscillations, periodic alternations of spiking and quiescence modeled by fast-slow systems. In such systems, one or more slow variables carry the fast variables through a sequence of bifurcations that mediate transitions between oscillations and steady states. A rigorous classification approach is to characterize the bifurcations found in the neighborhood of a singularity; a measure of the complexity of the bursting oscillation is then given by the smallest codimension of the singularities near which it occurs. Fold/homoclinic bursting, along with most other burst types of interest, has been shown to occur near a singularity of codimension three by examining bifurcations of a cubic Liénard system; hence, these types of bursting have at most codimension three. Modeling and biological considerations suggest that fold/homoclinic bursting should be found near fold/subHopf bursting, a more recently identified burst type whose codimension has not been determined yet. One would expect that fold/subHopf bursting has the same codimension as fold/homoclinic bursting, because models of these two burst types have very similar underlying bifurcation diagrams. However, no codimension-three singularity is known that supports fold/subHopf bursting, which indicates that it may have codimension four. We identify a three-dimensional slice in a partial unfolding of a doubly-degenerate Bodganov-Takens point, and show that this codimension-four singularity gives rise to almost all known types of bursting.

摘要

大量工作致力于对爆发性振荡进行分类,爆发性振荡是由快慢系统建模的尖峰和静止的周期性交替。在这样的系统中,一个或多个慢变量通过一系列分岔来携带快变量,这些分岔介导振荡和稳态之间的转变。一种严格的分类方法是刻画在奇点邻域发现的分岔;然后,爆发性振荡的复杂性度量由其出现附近奇点的最小余维数给出。通过研究三次Liénard系统的分岔,已表明折叠/同宿爆发以及大多数其他感兴趣的爆发类型发生在余维数为三的奇点附近;因此,这些类型的爆发最多具有余维数三。建模和生物学方面的考虑表明,折叠/同宿爆发应该在折叠/亚霍普夫爆发附近被发现,折叠/亚霍普夫爆发是一种最近才被识别的爆发类型,其余维数尚未确定。人们会预期折叠/亚霍普夫爆发与折叠/同宿爆发具有相同的余维数,因为这两种爆发类型的模型具有非常相似的基础分岔图。然而,目前尚不知道有支持折叠/亚霍普夫爆发的余维数为三的奇点,这表明它可能具有余维数四。我们在一个双退化博德加诺夫 - 塔肯斯点的部分展开中确定了一个三维切片,并表明这个余维数为四的奇点产生了几乎所有已知类型的爆发。

相似文献

4
Mechanism of bistability: tonic spiking and bursting in a neuron model.双稳态机制:神经元模型中的紧张性发放和爆发式发放
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056214. doi: 10.1103/PhysRevE.71.056214. Epub 2005 May 31.

引用本文的文献

1
Bifurcations and bursting in the Epileptor.癫痫器中的分岔与突发
PLoS Comput Biol. 2024 Mar 6;20(3):e1011903. doi: 10.1371/journal.pcbi.1011903. eCollection 2024 Mar.
3
Slow negative feedback enhances robustness of square-wave bursting.慢负反馈增强方波爆发的鲁棒性。
J Comput Neurosci. 2023 May;51(2):239-261. doi: 10.1007/s10827-023-00846-y. Epub 2023 Apr 17.
4
Classification of bursting patterns: A tale of two ducks.爆发模式的分类:两只鸭子的故事。
PLoS Comput Biol. 2022 Feb 24;18(2):e1009752. doi: 10.1371/journal.pcbi.1009752. eCollection 2022 Feb.
6
Robust spike timing in an excitable cell with delayed feedback.具有延迟反馈的兴奋细胞中的稳健尖峰定时。
J R Soc Interface. 2021 Apr;18(177):20210029. doi: 10.1098/rsif.2021.0029. Epub 2021 Apr 14.
10
Multiple timescale mixed bursting dynamics in a respiratory neuron model.呼吸神经元模型中的多时间尺度混合爆发动力学
J Comput Neurosci. 2016 Dec;41(3):245-268. doi: 10.1007/s10827-016-0616-6. Epub 2016 Aug 5.

本文引用的文献

1
From plateau to pseudo-plateau bursting: making the transition.从高原到伪高原爆裂:实现转变。
Bull Math Biol. 2011 Jun;73(6):1292-311. doi: 10.1007/s11538-010-9559-7. Epub 2010 Jul 24.
2
Full system bifurcation analysis of endocrine bursting models.内分泌爆发模型的全系统分岔分析。
J Theor Biol. 2010 Jun 21;264(4):1133-46. doi: 10.1016/j.jtbi.2010.03.030. Epub 2010 Mar 20.
3
Mixed mode oscillations as a mechanism for pseudo-plateau bursting.混合模式振荡作为伪平台期爆发的一种机制。
J Comput Neurosci. 2010 Jun;28(3):443-58. doi: 10.1007/s10827-010-0226-7. Epub 2010 Feb 26.
8
Mechanism of bistability: tonic spiking and bursting in a neuron model.双稳态机制:神经元模型中的紧张性发放和爆发式发放
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056214. doi: 10.1103/PhysRevE.71.056214. Epub 2005 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验