Suppr超能文献

人类动物源传染病建模:瑞典汉坦病毒方法比较。

Modelling zoonotic diseases in humans: comparison of methods for hantavirus in Sweden.

机构信息

Georges Lemaître Centre for Earth and Climate Research-TECLIM), Earth and Life Institute, Université catholique de Louvain-UCLouvain, Louvain, Belgium.

出版信息

Int J Health Geogr. 2012 Sep 17;11:39. doi: 10.1186/1476-072X-11-39.

Abstract

Because their distribution usually depends on the presence of more than one species, modelling zoonotic diseases in humans differs from modelling individual species distribution even though the data are similar in nature. Three approaches can be used to model spatial distributions recorded by points: based on presence/absence, presence/available or presence data. Here, we compared one or two of several existing methods for each of these approaches. Human cases of hantavirus infection reported by place of infection between 1991 and 1998 in Sweden were used as a case study. Puumala virus (PUUV), the most common hantavirus in Europe, circulates among bank voles (Myodes glareolus). In northern Sweden, it causes nephropathia epidemica (NE) in humans, a mild form of hemorrhagic fever with renal syndrome.Logistic binomial regression and boosted regression trees were used to model presence and absence data. Presence and available sites (where the disease may occur) were modelled using cross-validated logistic regression. Finally, the ecological niche model MaxEnt, based on presence-only data, was used.In our study, logistic regression had the best predictive power, followed by boosted regression trees, MaxEnt and cross-validated logistic regression. It is also the most statistically reliable but requires absence data. The cross-validated method partly avoids the issue of absence data but requires fastidious calculations. MaxEnt accounts for non-linear responses but the estimators can be complex. The advantages and disadvantages of each method are reviewed.

摘要

由于它们的分布通常取决于一个以上物种的存在,因此,人类传染病的建模与单个物种分布的建模不同,尽管数据在本质上是相似的。有三种方法可用于对记录的点的空间分布进行建模:基于存在/不存在、存在/可用或存在数据。在这里,我们比较了这三种方法中的每一种的一种或两种现有方法。将 1991 年至 1998 年间瑞典按感染地点报告的人类汉坦病毒感染病例用作案例研究。在欧洲最常见的普马拉病毒(PUUV)在林姬鼠(Myodes glareolus)中传播。在瑞典北部,它会导致人类的流行性肾病(NE),这是一种轻度出血性发热伴肾综合征。逻辑二项式回归和增强回归树用于对存在和不存在数据进行建模。使用交叉验证逻辑回归对存在和可用站点(可能发生疾病的地方)进行建模。最后,使用仅基于存在数据的生态位模型 MaxEnt。在我们的研究中,逻辑回归具有最佳的预测能力,其次是增强回归树、MaxEnt 和交叉验证逻辑回归。它也是最具统计可靠性的方法,但需要不存在数据。交叉验证方法部分避免了不存在数据的问题,但需要繁琐的计算。MaxEnt 考虑了非线性响应,但估计器可能很复杂。我们对每种方法的优缺点进行了综述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验