Suppr超能文献

具有零效应依从者类别和缺失数据的依从性混合模型

Compliance mixture modelling with a zero-effect complier class and missing data.

作者信息

Sobel Michael E, Muthén Bengt

机构信息

Department of Statistics, Columbia University New York, NY 10027, USA.

出版信息

Biometrics. 2012 Dec;68(4):1037-45. doi: 10.1111/j.1541-0420.2012.01791.x. Epub 2012 Sep 17.

Abstract

Randomized experiments are the gold standard for evaluating proposed treatments. The intent to treat estimand measures the effect of treatment assignment, but not the effect of treatment if subjects take treatments to which they are not assigned. The desire to estimate the efficacy of the treatment in this case has been the impetus for a substantial literature on compliance over the last 15 years. In papers dealing with this issue, it is typically assumed there are different types of subjects, for example, those who will follow treatment assignment (compliers), and those who will always take a particular treatment irrespective of treatment assignment. The estimands of primary interest are the complier proportion and the complier average treatment effect (CACE). To estimate CACE, researchers have used various methods, for example, instrumental variables and parametric mixture models, treating compliers as a single class. However, it is often unreasonable to believe all compliers will be affected. This article therefore treats compliers as a mixture of two types, those belonging to a zero-effect class, others to an effect class. Second, in most experiments, some subjects drop out or simply do not report the value of the outcome variable, and the failure to take into account missing data can lead to biased estimates of treatment effects. Recent work on compliance in randomized experiments has addressed this issue by assuming missing data are missing at random or latently ignorable. We extend this work to the case where compliers are a mixture of types and also examine alternative types of nonignorable missing data assumptions.

摘要

随机试验是评估拟议治疗方法的金标准。意向性分析估计量衡量的是治疗分配的效果,而非受试者接受非分配治疗时的治疗效果。在这种情况下,估计治疗效果的愿望推动了过去15年中大量关于依从性的文献研究。在处理这个问题的论文中,通常假设存在不同类型的受试者,例如,那些会遵循治疗分配的受试者(依从者),以及那些无论治疗分配如何都会始终接受特定治疗的受试者。主要关注的估计量是依从者比例和依从者平均治疗效果(CACE)。为了估计CACE,研究人员使用了各种方法,例如工具变量法和参数混合模型,将依从者视为一个单一类别。然而,认为所有依从者都会受到影响往往是不合理的。因此,本文将依从者视为两种类型的混合,一种属于零效应类别,另一种属于有效应类别。其次,在大多数试验中,一些受试者会退出或根本不报告结果变量的值,而不考虑缺失数据可能导致治疗效果的估计出现偏差。最近关于随机试验中依从性的研究通过假设缺失数据是随机缺失或潜在可忽略的来解决这个问题。我们将这项工作扩展到依从者是多种类型混合的情况,并研究其他类型的不可忽略缺失数据假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验