Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
Biochemistry. 2012 Oct 23;51(42):8384-90. doi: 10.1021/bi300831m. Epub 2012 Oct 9.
Soluble guanylate cyclase (sGC) is a heme-containing enzyme that senses nitric oxide (NO). Formation of a heme Fe-NO complex is essential to sGC activation, and several spectroscopic techniques, including electron paramagnetic resonance (EPR) spectroscopy, have been aimed at elucidating the active enzyme conformation. Of these, only EPR spectra (X-band ~9.6 GHz) have shown differences between low- and high-activity Fe-NO states, and these states are modeled in two different heme domain truncations of sGC, β1(1-194) and β2(1-217), respectively (Derbyshire et al., Biochemistry 2008, 47, 3892-3899). The EPR signal of the low-activity sGC Fe-NO complex exhibits a broad lineshape that has been interpreted as resulting from site-to-site inhomogeneity, and simulated using g strain, a continuous distribution about the principal values of a given g tensor. This approach, however, fails to account for visible features in the X-band EPR spectra as well as the g anisotropy observed at higher microwave frequencies. Herein we analyze X-, Q-, and D-band EPR spectra and show that both the broad lineshape and the spectral structure of the sGC EPR signal at multiple microwave frequencies can be simulated successfully with a superposition of only two distinct g tensors. These tensors represent different populations that likely differ in Fe-NO bond angle, hydrogen bonding, or the geometry of the amino acid residues. One of these conformations can be linked to a form of the enzyme with higher activity.
可溶性鸟苷酸环化酶(sGC)是一种血红素酶,可感应一氧化氮(NO)。血红素 Fe-NO 络合物的形成对于 sGC 的激活至关重要,已经有几种光谱技术,包括电子顺磁共振(EPR)光谱学,旨在阐明活性酶构象。在这些技术中,只有 EPR 光谱(X 波段~9.6GHz)显示出低活性和高活性 Fe-NO 状态之间的差异,并且这些状态分别在 sGC 的两个不同血红素结构域截断中建模,β1(1-194)和β2(1-217)(Derbyshire 等人,生物化学 2008,47,3892-3899)。低活性 sGC Fe-NO 配合物的 EPR 信号表现出宽线形状,这被解释为源自位点间的不均匀性,并使用 g 应变进行模拟,g 应变是给定 g 张量主值的连续分布。然而,这种方法无法解释 X 波段 EPR 光谱中的可见特征以及在更高微波频率下观察到的 g 各向异性。在此,我们分析了 X、Q 和 D 波段 EPR 光谱,并表明宽线形状和 sGC EPR 信号在多个微波频率下的光谱结构可以仅用两个不同的 g 张量的叠加成功模拟。这些张量代表不同的群体,它们可能在 Fe-NO 键角、氢键或氨基酸残基的几何形状上有所不同。其中一种构象可能与具有更高活性的酶形式有关。