Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16383-8. doi: 10.1073/pnas.1211001109. Epub 2012 Sep 17.
Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-β-oxidative route and/or a β-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA β-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA β-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA β-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA β-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.
尽管苯甲酸(BA)作为广泛的初级和次级代谢物的前体具有重要意义,但它在植物中的生物合成尚未完全阐明。苯丙氨酸形成 BA 需要通过两个碳原子单位缩短 C(3)侧链,这可以通过非β-氧化途径和/或类似于脂肪酸分解的β-氧化途径发生。负责核心 BAβ-氧化途径的第一个和最后一个反应的酶(肉桂酸→肉桂酰-CoA→3-羟基-3-苯基丙酰-CoA→3-氧代-3-苯基丙酰-CoA→BA-CoA)以前在矮牵牛中得到了表征,矮牵牛是一种花朵富含苯丙氨酸/苯并呋喃类挥发性化合物的植物。使用功能基因组学方法,我们鉴定了矮牵牛基因编码肉桂酰-CoA 水合酶-脱氢酶(PhCHD),这是一种多功能过氧化物酶,负责核心 BAβ-氧化途径中两个连续发生的未探索中间步骤。PhCHD 在空间上、发育上和时间上与 BAβ-氧化途径中的已知基因共表达,并与苯并呋喃类挥发性物质的排放相关。重组 PhCHD 的动力学分析表明,它最有效地将肉桂酰-CoA 转化为 3-氧代-3-苯基丙酰-CoA,从而形成途径最后一步的底物。矮牵牛花朵中 PhCHD 表达的下调导致 CHD 酶活性降低,以及 BA-CoA、BA 和它们的衍生挥发性物质形成减少。此外,转基因系积累了 PhCHD 底物肉桂酰-CoA 和上游途径中间产物肉桂酸。PhCHD 的发现完成了植物中核心 BAβ-氧化途径的阐明,与以前表征的 CoA-连接酶和硫酯酶一起,为整个途径发生在过氧化物酶体中的观点提供了证据。