Centre for Rhizobium Studies, Murdoch University, WA 6150, Australia.
Ann Bot. 2012 Dec;110(8):1559-72. doi: 10.1093/aob/mcs206. Epub 2012 Sep 17.
Legumes overcome nitrogen limitations by entering into a mutualistic symbiosis with N(2)-fixing bacteria (rhizobia). Fully compatible associations (effective) between Trifolium spp. and Rhizobium leguminosarum bv. trifolii result from successful recognition of symbiotic partners in the rhizosphere, root hair infection and the formation of nodules where N(2)-fixing bacteroids reside. Poorly compatible associations can result in root nodule formation with minimal (sub-optimal) or no (ineffective) N(2)-fixation. Despite the abundance and persistence of strains in agricultural soils which are poorly compatible with the commercially grown clover species, little is known of how and why they fail symbiotically. The aims of this research were to determine the morphological aberrations occurring in sub-optimal and ineffective clover nodules and to determine whether reduced bacteroid numbers or reduced N(2)-fixing activity is the main cause for the Sub-optimal phenotype.
Symbiotic effectiveness of four Trifolium hosts with each of four R. leguminosarum bv. trifolii strains was assessed by analysis of plant yields and nitrogen content; nodule yields, abundance, morphology and internal structure; and bacteroid cytology, quantity and activity.
Effective nodules (Nodule Function 83-100 %) contained four developmental zones and N(2)-fixing bacteroids. In contrast, Sub-optimal nodules of the same age (Nodule Function 24-57 %) carried prematurely senescing bacteroids and a small bacteroid pool resulting in reduced shoot N. Ineffective-differentiated nodules carried bacteroids aborted at stage 2 or 3 in differentiation. In contrast, bacteroids were not observed in Ineffective-vegetative nodules despite the presence of bacteria within infection threads.
Three major responses to N(2)-fixation incompatibility between Trifolium spp. and R. l. trifolii strains were found: failed bacterial endocytosis from infection threads into plant cortical cells, bacteroid differentiation aborted prematurely, and a reduced pool of functional bacteroids which underwent premature senescence. We discuss possible underlying genetic causes of these developmental abnormalities and consider impacts on N(2)-fixation of clovers.
豆类植物通过与固氮细菌(根瘤菌)形成共生关系来克服氮素限制。三叶草属植物与根瘤菌属三叶草根瘤亚种(Rhizobium leguminosarum bv. trifolii)之间完全兼容的共生关系(有效)源自于在根际、根毛感染和形成固氮菌瘤的过程中,共生伙伴的成功识别。不兼容的共生关系可能导致形成根瘤,但固氮作用最小(次优)或不存在(无效)。尽管在农业土壤中存在大量与商业种植的三叶草品种不兼容的菌株,但人们对它们如何以及为何不能共生的了解甚少。本研究旨在确定次优和无效三叶草根瘤中发生的形态异常,并确定减少类菌体数量或减少固氮活性是否是次优表型的主要原因。
通过分析植物产量和氮含量、根瘤产量、丰度、形态和内部结构以及类菌体细胞学、数量和活性,评估了四种三叶草宿主与四种根瘤菌属三叶草根瘤亚种菌株的共生有效性。
有效的根瘤(根瘤功能 83-100%)含有四个发育区和固氮类菌体。相比之下,相同年龄的次优根瘤(根瘤功能 24-57%)含有过早衰老的类菌体和较小的类菌体池,导致地上部分氮含量减少。无效分化的根瘤携带在分化阶段 2 或 3 时中止的类菌体。相比之下,尽管感染线内存在细菌,但在无效营养性根瘤中没有观察到类菌体。
在三叶草属植物与根瘤菌属三叶草根瘤亚种菌株之间的固氮不兼容中发现了三种主要的反应:细菌从感染线内被植物皮层细胞内化失败、类菌体过早分化中止以及功能类菌体池减少并过早衰老。我们讨论了这些发育异常的潜在遗传原因,并考虑了它们对三叶草固氮的影响。