Suppr超能文献

工程菌大肠杆菌在批式培养中增加质粒 DNA 产量的高密度细胞。

Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode.

机构信息

Departamento de Medicina Molecular y Bioprocesos, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, Mexico.

出版信息

Microb Cell Fact. 2012 Sep 19;11:132. doi: 10.1186/1475-2859-11-132.

Abstract

BACKGROUND

Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions.

RESULTS

The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation.

CONCLUSION

The pDNA concentration obtained with the engineered strain VH33 Δ (recA deoR nupG) is, to the best of our knowledge, the highest reported for a batch cultivation, and its supercoiled fraction remained close to 80%. Strain VH33 Δ (recA deoR nupG) and its cultivation using elevated glucose concentrations represent an attractive technology for fast and efficient pDNA production and a valuable alternative to fed-batch cultivations of commercial strains.

摘要

背景

质粒 DNA(pDNA)是一种有前途的治疗应用分子。pDNA 是在大肠杆菌中使用分批补料模式在高密度细胞培养(HCDC)中产生的。这种培养的典型限制,包括由于大型生物反应器中存在底物梯度而导致的有氧乙酸产生等代谢偏差,仍然是快速有效生产 pDNA 的严重挑战。我们之前已经证明,通过过表达半乳糖渗透酶替代磷酸转移酶系统来摄取葡萄糖,可以使大肠杆菌(VH33 株)有效生长,同时强烈降低乙酸的产生。在本工作中,对 VH33 进行了额外的遗传修饰,以进一步提高 pDNA 的产量。从菌株 VH33 中删除了几个基因:recA、deoR、nupG 和 endA 基因分别独立和组合失活。在摇瓶中评估了突变菌株生产携带腮腺炎抗原基因的 6.1kb 质粒的情况。在分批模式下,使用 100g/L 葡萄糖在实验室规模的生物反应器中培养最佳生产菌株,以实现 HCDC。作为比较,还在相同条件下培养了携带相同质粒的常用商业菌株 DH5α。

结果

测试的各种突变对比生长速率、葡萄糖摄取率和 pDNA 产率(YP/X)有不同的影响。三重突变体 VH33 Δ(recA deoR nupG)积累了少量乙酸,产生了最佳的 YP/X(4.22mg/g),而 VH33 菌株的 YP/X 仅达到 1.16mg/g。当在高葡萄糖浓度下培养时,三重突变体菌株产生 186mg/L 的 pDNA、40g/L 的生物质和仅 2.2g/L 的乙酸。相比之下,DH5α 仅产生 70mg/L 的 pDNA,积累 9.5g/L 的乙酸。此外,三重突变体产生的 pDNA 的超螺旋部分在整个培养过程中几乎保持不变。

结论

据我们所知,工程菌株 VH33 Δ(recA deoR nupG)获得的 pDNA 浓度是分批培养中报道的最高浓度,其超螺旋部分接近 80%。VH33 Δ(recA deoR nupG)菌株及其使用升高的葡萄糖浓度进行的培养代表了快速高效生产 pDNA 的有吸引力的技术,是商业菌株补料分批培养的有价值替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e650/3503842/bc8042ce4014/1475-2859-11-132-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验