Department of Psychology, Columbia University, New York, NY 10027-7004, USA.
Prog Retin Eye Res. 2013 Jan;32:1-21. doi: 10.1016/j.preteyeres.2012.08.003. Epub 2012 Sep 17.
There is a growing body of evidence that early glaucomatous damage involves the macula. The anatomical basis of this damage can be studied using frequency domain optical coherence tomography (fdOCT), by which the local thickness of the retinal nerve fiber layer (RNFL) and local retinal ganglion cell plus inner plexiform (RGC+) layer can be measured. Based upon averaged fdOCT results from healthy controls and patients, we show that: 1. For healthy controls, the average RGC+ layer thickness closely matches human histological data; 2. For glaucoma patients and suspects, the average RGC+ layer shows greater glaucomatous thinning in the inferior retina (superior visual field (VF)); and 3. The central test points of the 6° VF grid (24-2 test pattern) miss the region of greatest RGC+ thinning. Based upon fdOCT results from individual patients, we have learned that: 1. Local RGC+ loss is associated with local VF sensitivity loss as long as the displacement of RGCs from the foveal center is taken into consideration; and 2. Macular damage is typically arcuate in nature and often associated with local RNFL thinning in a narrow region of the disc, which we call the macular vulnerability zone (MVZ). According to our schematic model of macular damage, most of the inferior region of the macula projects to the MVZ, which is located largely in the inferior quadrant of the disc, a region that is particularly susceptible to glaucomatous damage. A small (cecocentral) region of the inferior macula, and all of the superior macula (inferior VF), project to the temporal quadrant, a region that is less susceptible to damage. The overall message is clear; clinicians need to be aware that glaucomatous damage to the macula is common, can occur early in the disease, and can be missed and/or underestimated with standard VF tests that use a 6° grid, such as the 24-2 VF test.
越来越多的证据表明,早期青光眼损害涉及黄斑。这种损害的解剖学基础可以通过频域光相干断层扫描(fdOCT)进行研究,通过该技术可以测量视网膜神经纤维层(RNFL)的局部厚度和局部视网膜神经节细胞加内丛状层(RGC+)的局部厚度。基于健康对照组和患者的平均 fdOCT 结果,我们表明:1. 对于健康对照组,平均 RGC+层厚度与人体组织学数据非常吻合;2. 对于青光眼患者和疑似患者,平均 RGC+层在下视网膜(上视野(VF))中显示出更大的青光眼变薄;3. 6°VF 网格的中央测试点(24-2 测试模式)错过了 RGC+最薄的区域。根据个别患者的 fdOCT 结果,我们了解到:1. 只要考虑到 RGC 从黄斑中心的移位,局部 RGC 损失与局部 VF 灵敏度损失相关;2. 黄斑损伤通常呈弓形,并且通常与盘的狭窄区域中的局部 RNFL 变薄相关,我们称之为黄斑脆弱区(MVZ)。根据我们的黄斑损伤示意图模型,黄斑的大部分下区域投射到 MVZ,该区域主要位于盘的下象限,该区域特别容易受到青光眼损伤。黄斑下的一个小(中央旁)区域和所有的上黄斑(下 VF)投射到颞象限,该区域不易受损。总的来说,信息很清楚;临床医生需要意识到黄斑的青光眼损害很常见,可能在疾病早期发生,并且可能会错过和/或低估使用 6°网格(例如 24-2VF 测试)的标准 VF 测试。