Suppr超能文献

生物材料中细胞分化的体内生物发光成像:支架开发的平台。

In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development.

机构信息

Cardiovascular Research Center CSIC-ICCC, CIBER-BBN, Barcelona, Spain.

出版信息

Tissue Eng Part A. 2013 Mar;19(5-6):593-603. doi: 10.1089/ten.TEA.2012.0073. Epub 2012 Dec 21.

Abstract

In vivo testing is a mandatory last step in scaffold development. Agile longitudinal noninvasive real-time monitoring of stem cell behavior in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a noninvasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue-derived stromal mensenchymal cells were dually labeled with Renilla red fluorescent protein and firefly green fluorescent protein chimeric reporters regulated by cytomegalovirus and tissue-specific promoters, respectively. Labeled cells were induced to differentiate in vitro and in vivo, by seeding in demineralized bone matrices (DBMs) and monitored by BLI. Imaging results were validated by RT-polymerase chain reaction and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs, should facilitate engineering of scaffolds for tissue repair.

摘要

体内测试是支架开发的强制性最后步骤。在活体内植入生物材料的干细胞行为进行敏捷的纵向非侵入实时监测,应有助于组织工程支架的开发。我们报告了一种非侵入性的生物发光成像(BLI)程序,用于同时监测多个基因表达的变化,以评估体内支架的性能。脂肪组织衍生的基质间充质细胞分别用海肾荧光蛋白和萤火虫绿色荧光蛋白嵌合报告基因标记,由巨细胞病毒和组织特异性启动子调节。标记的细胞在体外和体内诱导分化,通过在脱钙骨基质(DBM)中接种,并通过 BLI 进行监测。通过 RT-聚合酶链反应和组织学程序对成像结果进行了验证。所提出的方法改进了活体内植入细胞的分子成像和基因表达变化的测量。该程序适用于从接种在 DBM 中的细胞同时分析多个基因,应有助于组织修复支架的工程设计。

相似文献

1
In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development.
Tissue Eng Part A. 2013 Mar;19(5-6):593-603. doi: 10.1089/ten.TEA.2012.0073. Epub 2012 Dec 21.
4
7
A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells.
Spine J. 2014 Mar 1;14(3):445-54. doi: 10.1016/j.spinee.2013.09.045. Epub 2013 Oct 25.
8
Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors.
Acta Biomater. 2014 Oct;10(10):4377-89. doi: 10.1016/j.actbio.2014.05.028. Epub 2014 Jun 4.
10
In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs.
Tissue Eng Part C Methods. 2014 Oct;20(10):806-16. doi: 10.1089/ten.TEC.2013.0587. Epub 2014 Apr 3.

引用本文的文献

1
Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering.
J Tissue Eng. 2021 Feb 16;12:2041731421995465. doi: 10.1177/2041731421995465. eCollection 2021 Jan-Dec.
2
Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi.
Tissue Eng Part C Methods. 2019 Feb;25(2):103-113. doi: 10.1089/ten.TEC.2018.0351.
5
The substrate matters in the Raman spectroscopy analysis of cells.
Sci Rep. 2015 Aug 27;5:13150. doi: 10.1038/srep13150.
8
Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration.
Ann Biomed Eng. 2015 Mar;43(3):681-96. doi: 10.1007/s10439-014-1151-0. Epub 2014 Oct 16.
9
A perspective on the clinical translation of scaffolds for tissue engineering.
Ann Biomed Eng. 2015 Mar;43(3):641-56. doi: 10.1007/s10439-014-1104-7. Epub 2014 Sep 9.
10
Fast-proliferating adipose tissue mesenchymal-stromal-like cells for therapy.
Stem Cells Dev. 2014 Dec 1;23(23):2908-20. doi: 10.1089/scd.2014.0231. Epub 2014 Aug 13.

本文引用的文献

1
Application of the firefly luciferase reporter gene.
Methods Mol Biol. 1991;7:237-41. doi: 10.1385/0-89603-178-0:237.
2
Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats.
Tissue Eng Part A. 2010 Nov;16(11):3343-51. doi: 10.1089/ten.TEA.2009.0774. Epub 2010 Jul 13.
6
Advances in bioluminescence imaging of live animal models.
Curr Opin Biotechnol. 2009 Feb;20(1):45-53. doi: 10.1016/j.copbio.2009.01.007. Epub 2009 Feb 23.
7
Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair.
Exp Biol Med (Maywood). 2009 Jan;234(1):1-9. doi: 10.3181/0805/MR-170.
10
Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells.
Biomaterials. 2008 Feb;29(4):427-37. doi: 10.1016/j.biomaterials.2007.10.006. Epub 2007 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验