Caires Hugo R, Gomez-Lazaro Maria, Oliveira Carla M, Gomes David, Mateus Denisa D, Oliveira Carla, Barrias Cristina C, Barbosa Mário A, Almeida Catarina R
1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] b.IMAGE - Bioimaging Center for Biomaterials and Regenerative Therapies, INEB, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
Sci Rep. 2015 May 14;5:10079. doi: 10.1038/srep10079.
Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.
间充质干/基质细胞(MSC)是一种很有前景的细胞类型,可用于基于细胞的治疗——从组织再生到自身免疫性疾病的治疗——这归因于它们能够迁移到受损组织、在不同谱系中分化以及具有免疫调节和旁分泌特性。在此,开发了一种简单可靠的成像技术来研究MSC在天然和生物工程3D基质中的动态行为。对人MSC进行转染以表达一种荧光光开关蛋白Dendra2,即使将细胞从显微镜转移到培养箱中,该蛋白也可用于标记和追踪同一组细胞长达七天以上。该策略在具有不同特性的3D微环境中提供了可靠的追踪,这些微环境包括水凝胶基质胶和藻酸盐以及壳聚糖多孔支架。对嵌入具有不同物理化学性质基质中的细胞迁移率进行比较发现,嵌入5.2mg蛋白质/mL基质胶中的MSC比嵌入9.6mg/mL基质胶中的MSC迁移速度快64%,并且嵌入1%聚合物浓度的RGD-藻酸盐中的MSC比嵌入2%RGD-藻酸盐中的MSC迁移速度快51%。因此,该平台提供了一种直接的方法来表征3D环境中MSC的动态行为,并且在干细胞生物学领域以及组织再生生物材料的开发中具有应用价值。