Suppr超能文献

用于骨和软骨再生的组织工程构建体的临床前表征

Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration.

作者信息

Trachtenberg Jordan E, Vo Tiffany N, Mikos Antonios G

机构信息

Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX, 77251-1892, USA.

出版信息

Ann Biomed Eng. 2015 Mar;43(3):681-96. doi: 10.1007/s10439-014-1151-0. Epub 2014 Oct 16.

Abstract

Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth.

摘要

临床前动物模型在将生物医学技术从实验室台面转化到临床应用中起着至关重要的作用。然而,需要改进技术来评估宿主体内植入的生物材料,这包括考虑与动物研究相关的护理和伦理问题,以及以临床相关的方式评估宿主组织修复情况。本综述讨论了用于评估宿主-材料相互作用、新组织形成的质量和速率以及骨和软骨组织工程中植入生物材料的功能结果的非侵入性、定量和实时技术。具体而言,将对临床前动物模型、组织学评分系统和非侵入性成像模式进行比较。此外,还将讨论追踪递送的细胞和生长因子的新技术,包括将它们的释放与组织生长直接关联的方法。

相似文献

1
Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration.
Ann Biomed Eng. 2015 Mar;43(3):681-96. doi: 10.1007/s10439-014-1151-0. Epub 2014 Oct 16.
2
Novel materials for bone and cartilage regeneration.
Curr Opin Chem Biol. 2006 Dec;10(6):568-75. doi: 10.1016/j.cbpa.2006.09.009. Epub 2006 Sep 29.
3
Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model.
Knee Surg Sports Traumatol Arthrosc. 2014 Jun;22(6):1452-64. doi: 10.1007/s00167-013-2467-2. Epub 2013 Mar 12.
4
Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues.
Adv Exp Med Biol. 2015;881:15-31. doi: 10.1007/978-3-319-22345-2_2.
5
Engineering Pre-vascularized Scaffolds for Bone Regeneration.
Adv Exp Med Biol. 2015;881:79-94. doi: 10.1007/978-3-319-22345-2_5.
6
Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering.
Cold Spring Harb Perspect Med. 2017 Dec 1;7(12):a025734. doi: 10.1101/cshperspect.a025734.
8
Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
Tissue Eng Part C Methods. 2017 Mar;23(3):156-168. doi: 10.1089/ten.TEC.2016.0368. Epub 2017 Feb 22.
9
[Biomaterials used in tissue engineering for cartilage regeneration].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001 Dec;18(4):638-41, 652.
10
Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.
Macromol Biosci. 2015 Feb;15(2):153-82. doi: 10.1002/mabi.201400335. Epub 2014 Oct 3.

引用本文的文献

1
In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy.
Biomater Biosyst. 2022 Jul 28;7:100059. doi: 10.1016/j.bbiosy.2022.100059. eCollection 2022 Aug.
2
The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review.
Tissue Eng Part B Rev. 2023 Apr;29(2):167-187. doi: 10.1089/ten.TEB.2022.0033. Epub 2022 Oct 20.
3
Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors.
Bone Res. 2021 Oct 27;9(1):46. doi: 10.1038/s41413-021-00167-9.
4
Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised chorioallantoic membrane model.
J Tissue Eng. 2020 Feb 4;11:2041731420901621. doi: 10.1177/2041731420901621. eCollection 2020 Jan-Dec.
5
Collagen immobilization on ultra-thin nanofiber membrane to promote endothelial monolayer formation.
J Tissue Eng. 2019 Nov 14;10:2041731419887833. doi: 10.1177/2041731419887833. eCollection 2019 Jan-Dec.
6
imaging techniques for bone tissue engineering.
J Tissue Eng. 2019 Jun 21;10:2041731419854586. doi: 10.1177/2041731419854586. eCollection 2019 Jan-Dec.
7
Progress in three-dimensional printing with growth factors.
J Control Release. 2019 Feb 10;295:50-59. doi: 10.1016/j.jconrel.2018.12.035. Epub 2018 Dec 20.
9
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures.
Stem Cells Int. 2018 Feb 5;2018:9079538. doi: 10.1155/2018/9079538. eCollection 2018.
10
Imaging Biomaterial-Tissue Interactions.
Trends Biotechnol. 2018 Apr;36(4):403-414. doi: 10.1016/j.tibtech.2017.09.004. Epub 2017 Oct 17.

本文引用的文献

3
Intra- and inter-observer reliability of ten major histological scoring systems used for the evaluation of in vivo cartilage repair.
Knee Surg Sports Traumatol Arthrosc. 2015 Sep;23(9):2484-93. doi: 10.1007/s00167-014-2975-8. Epub 2014 Apr 9.
6
In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs.
Tissue Eng Part C Methods. 2014 Oct;20(10):806-16. doi: 10.1089/ten.TEC.2013.0587. Epub 2014 Apr 3.
7
Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.
PLoS One. 2014 Jan 2;9(1):e83599. doi: 10.1371/journal.pone.0083599. eCollection 2014.
8
In vivo cell tracking by bioluminescence imaging after transplantation of bioengineered cell sheets to the knee joint.
Biomaterials. 2014 Feb;35(7):2199-206. doi: 10.1016/j.biomaterials.2013.11.071. Epub 2013 Dec 20.
9
Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy.
Angew Chem Int Ed Engl. 2014 Jan 3;53(1):184-8. doi: 10.1002/anie.201306282. Epub 2013 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验