Suppr超能文献

评价二分类性状的可移动统计交互作用。

Evaluation of removable statistical interaction for binary traits.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Stat Med. 2013 Mar 30;32(7):1164-90. doi: 10.1002/sim.5628. Epub 2012 Sep 27.

Abstract

This paper is concerned with evaluating whether an interaction between two sets of risk factors for a binary trait is removable and, when it is removable, fitting a parsimonious additive model using a suitable link function to estimate the disease odds (on the natural logarithm scale). Statisticians define the term 'interaction' as a departure from additivity in a linear model on a specific scale on which the data are measured. Certain interactions may be eliminated via a transformation of the outcome such that the relationship between the risk factors and the outcome is additive on the transformed scale. Such interactions are known as removable interactions. We develop a novel test statistic for detecting the presence of a removable interaction in case-control studies. We consider the Guerrero and Johnson family of transformations and show that this family constitutes an appropriate link function for fitting an additive model when an interaction is removable. We use simulation studies to examine the type I error and power of the proposed test and to show that, when an interaction is removable, an additive model based on the Guerrero and Johnson link function leads to more precise estimates of the disease odds parameters and a better fit. We illustrate the proposed test and use of the transformation by using case-control data from three published studies. Finally, we indicate how one can check that, after transformation, no further interaction is significant.

摘要

本文旨在评估二项分类性状的两组风险因素之间的交互作用是否可以消除,以及当交互作用可以消除时,使用合适的链接函数拟合简约的加性模型,以估计疾病的优势比(自然对数尺度)。统计学家将“交互作用”一词定义为在线性模型中偏离特定尺度上的可加性,而数据是在该尺度上测量的。通过对结果进行转换,可以消除某些交互作用,从而使风险因素与结果之间的关系在转换后的尺度上具有加性。这种交互作用被称为可消除的交互作用。我们开发了一种新的检验统计量,用于检测病例对照研究中可消除交互作用的存在。我们考虑了 Guerrero 和 Johnson 变换族,并表明当交互作用可以消除时,该变换族构成了拟合加性模型的合适链接函数。我们使用模拟研究来评估拟议检验的Ⅰ型错误和功效,并表明当交互作用可以消除时,基于 Guerrero 和 Johnson 链接函数的加性模型可以更准确地估计疾病优势比参数,并具有更好的拟合度。我们通过使用来自三个已发表研究的病例对照数据来说明拟议的检验和变换的使用。最后,我们指出如何检查转换后是否没有其他交互作用具有统计学意义。

相似文献

1
Evaluation of removable statistical interaction for binary traits.
Stat Med. 2013 Mar 30;32(7):1164-90. doi: 10.1002/sim.5628. Epub 2012 Sep 27.
2
Statistical interactions and Bayes estimation of log odds in case-control studies.
Stat Methods Med Res. 2017 Apr;26(2):1021-1038. doi: 10.1177/0962280214567140. Epub 2015 Jan 12.
3
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
Stat Med. 2016 Jan 15;35(1):21-40. doi: 10.1002/sim.6620. Epub 2015 Aug 24.
4
Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma.
Pharmacogenomics. 2006 Sep;7(6):819-29. doi: 10.2217/14622416.7.6.819.
5
Statistical Interactions from a Growth Curve Perspective.
Hum Hered. 2016;82(1-2):21-36. doi: 10.1159/000477125. Epub 2017 Jul 26.
9
The sum of standardized residuals: Goodness-of-fit test for binary response models.
Stat Med. 2018 May 20;37(11):1932-1941. doi: 10.1002/sim.7644. Epub 2018 Mar 26.

引用本文的文献

1
How to increase our belief in discovered statistical interactions via large-scale association studies?
Hum Genet. 2019 Apr;138(4):293-305. doi: 10.1007/s00439-019-01987-w. Epub 2019 Mar 6.
2
Case-only approach to identifying markers predicting treatment effects on the relative risk scale.
Biometrics. 2018 Jun;74(2):753-763. doi: 10.1111/biom.12789. Epub 2017 Sep 28.
3
Statistical Interactions from a Growth Curve Perspective.
Hum Hered. 2016;82(1-2):21-36. doi: 10.1159/000477125. Epub 2017 Jul 26.
4
Measuring differential treatment benefit across marker specific subgroups: The choice of outcome scale.
Contemp Clin Trials. 2017 Dec;63:40-50. doi: 10.1016/j.cct.2017.02.007. Epub 2017 Feb 22.
5
Prognostic and Predictive Values and Statistical Interactions in the Era of Targeted Treatment.
Genet Epidemiol. 2015 Nov;39(7):509-17. doi: 10.1002/gepi.21917. Epub 2015 Sep 9.
6
Sunburn, sun exposure, and sun sensitivity in the Study of Nevi in Children.
Ann Epidemiol. 2015 Nov;25(11):839-43. doi: 10.1016/j.annepidem.2015.05.004. Epub 2015 May 23.
7
Powerful Tukey's One Degree-of-Freedom Test for Detecting Gene-Gene and Gene-Environment Interactions.
Cancer Inform. 2015 Jun 4;14(Suppl 2):209-18. doi: 10.4137/CIN.S17305. eCollection 2015.
8
Statistical interactions and Bayes estimation of log odds in case-control studies.
Stat Methods Med Res. 2017 Apr;26(2):1021-1038. doi: 10.1177/0962280214567140. Epub 2015 Jan 12.
9
Analysis pipeline for the epistasis search - statistical versus biological filtering.
Front Genet. 2014 Apr 30;5:106. doi: 10.3389/fgene.2014.00106. eCollection 2014.

本文引用的文献

1
The meaning of interaction.
Hum Hered. 2010;70(4):269-77. doi: 10.1159/000321967. Epub 2010 Dec 8.
2
Using biological knowledge to discover higher order interactions in genetic association studies.
Genet Epidemiol. 2010 Dec;34(8):863-78. doi: 10.1002/gepi.20542.
3
Statistical interaction in human genetics: how should we model it if we are looking for biological interaction?
Nat Rev Genet. 2011 Jan;12(1):74. doi: 10.1038/nrg2579-c2. Epub 2010 Nov 23.
4
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
Nat Genet. 2010 Nov;42(11):978-84. doi: 10.1038/ng.687. Epub 2010 Oct 24.
5
The interaction of nature and nurture.
Ann Eugen. 1946 Nov;13(3):197-205. doi: 10.1111/j.1469-1809.1946.tb02358.x.
6
Epistatic interactions.
Stat Appl Genet Mol Biol. 2010;9(1):Article 1. doi: 10.2202/1544-6115.1517. Epub 2010 Jan 6.
7
Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
Am J Hum Genet. 2010 Jan;86(1):6-22. doi: 10.1016/j.ajhg.2009.11.017.
8
Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies.
Annu Rev Public Health. 2010;31:21-36. doi: 10.1146/annurev.publhealth.012809.103619.
9
Bayesian mixture modeling of gene-environment and gene-gene interactions.
Genet Epidemiol. 2010 Jan;34(1):16-25. doi: 10.1002/gepi.20429.
10
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验