Suppr超能文献

MiRmap:microRNA 靶基因抑制强度的综合预测。

MiRmap: comprehensive prediction of microRNA target repression strength.

机构信息

Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.

出版信息

Nucleic Acids Res. 2012 Dec;40(22):11673-83. doi: 10.1093/nar/gks901. Epub 2012 Oct 2.

Abstract

MicroRNAs, or miRNAs, post-transcriptionally repress the expression of protein-coding genes. The human genome encodes over 1000 miRNA genes that collectively target the majority of messenger RNAs (mRNAs). Base pairing of the so-called miRNA 'seed' region with mRNAs identifies many thousands of putative targets. Evaluating the strength of the resulting mRNA repression remains challenging, but is essential for a biologically informative ranking of potential miRNA targets. To address these challenges, predictors may use thermodynamic, evolutionary, probabilistic or sequence-based features. We developed an open-source software library, miRmap, which for the first time comprehensively covers all four approaches using 11 predictor features, 3 of which are novel. This allowed us to examine feature correlations and to compare their predictive power in an unbiased way using high-throughput experimental data from immunopurification, transcriptomics, proteomics and polysome fractionation experiments. Overall, target site accessibility appears to be the most predictive feature. Our novel feature based on PhyloP, which evaluates the significance of negative selection, is the best performing predictor in the evolutionary category. We combined all the features into an integrated model that almost doubles the predictive power of TargetScan. miRmap is freely available from http://cegg.unige.ch/mirmap.

摘要

微小 RNA(miRNA)在后转录水平上抑制蛋白质编码基因的表达。人类基因组编码了超过 1000 个 miRNA 基因,它们共同靶向大多数信使 RNA(mRNA)。所谓 miRNA“种子”区域与 mRNAs 的碱基配对鉴定了数千个可能的靶标。评估由此产生的 mRNA 抑制的强度仍然具有挑战性,但对于对潜在 miRNA 靶标的生物学信息进行排名是必不可少的。为了解决这些挑战,预测器可以使用热力学、进化、概率或基于序列的特征。我们开发了一个开源软件库 miRmap,它首次全面涵盖了使用 11 个预测特征的所有四种方法,其中 3 个是新颖的。这使我们能够检查特征相关性,并使用高通量免疫沉淀、转录组学、蛋白质组学和多核糖体馏分实验的实验数据以无偏的方式比较它们的预测能力。总体而言,靶标位点可及性似乎是最具预测性的特征。我们基于 PhyloP 的新特征,该特征评估负选择的重要性,是进化类别中表现最佳的预测器。我们将所有特征组合成一个集成模型,该模型将 TargetScan 的预测能力提高了近一倍。miRmap 可从 http://cegg.unige.ch/mirmap 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/690f/3526310/9acffb63afad/gks901f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验