Department of Neuroscience, Columbia University, New York, NY 10032, USA.
Neuron. 2012 Oct 18;76(2):281-95. doi: 10.1016/j.neuron.2012.09.034. Epub 2012 Oct 17.
Despite many studies on selective attention, fundamental questions remain about its nature and neural mechanisms. Here I draw from the animal and machine learning fields that describe attention as a mechanism for active learning and uncertainty reduction and explore the implications of this view for understanding visual attention and eye movement control. I propose that a closer integration of these different views has the potential greatly to expand our understanding of oculomotor control and our ability to use this system as a window into high level but poorly understood cognitive functions, including the capacity for curiosity and exploration and for inferring internal models of the external world.
尽管有许多关于选择性注意的研究,但它的本质和神经机制仍存在一些基本问题。在这里,我借鉴了描述注意是一种主动学习和降低不确定性的机制的动物和机器学习领域的研究,并探讨了这种观点对理解视觉注意和眼球运动控制的意义。我提出,更紧密地整合这些不同的观点有可能极大地扩展我们对眼球运动控制的理解,以及我们利用这个系统作为了解高级但理解不足的认知功能的窗口的能力,包括好奇心和探索的能力,以及推断外部世界内部模型的能力。