Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, 91198 Gif-sur-Yvette, France.
Mol Cell. 2012 Nov 30;48(4):560-71. doi: 10.1016/j.molcel.2012.09.009. Epub 2012 Oct 18.
The E. coli chromosome is condensed into insulated regions termed macrodomains (MDs), which are essential for genomic packaging. How chromosomal MDs are specifically organized and compacted is unknown. Here, we report studies revealing the molecular basis for Terminus-containing (Ter) chromosome condensation by the Ter-specific factor MatP. MatP contains a tripartite fold with a four-helix bundle DNA-binding motif, ribbon-helix-helix and C-terminal coiled-coil. Strikingly, MatP-matS structures show that the MatP coiled-coils form bridged tetramers that flexibly link distant matS sites. Atomic force microscopy and electron microscopy studies demonstrate that MatP alone loops DNA. Mutation of key coiled-coil residues destroys looping and causes a loss of Ter condensation in vivo. Thus, these data reveal the molecular basis for a protein-mediated DNA-bridging mechanism that mediates condensation of a large chromosomal domain in enterobacteria.
大肠杆菌染色体被浓缩成称为宏观区域 (MD) 的隔离区域,这对于基因组包装至关重要。染色体 MD 是如何被特异性组织和压缩的尚不清楚。在这里,我们报告了一些研究,揭示了端粒 (Ter) 染色体凝聚的分子基础,这是由 Ter 特异性因子 MatP 完成的。MatP 包含一个三部分折叠结构,具有四螺旋束 DNA 结合基序、带状螺旋-螺旋和 C 末端卷曲螺旋。引人注目的是,MatP-matS 结构表明 MatP 卷曲螺旋形成桥接四聚体,可灵活连接远距离的 matS 位点。原子力显微镜和电子显微镜研究表明,MatP 可单独环化 DNA。关键卷曲螺旋残基的突变破坏了环化作用,并导致体内 Ter 凝聚的丧失。因此,这些数据揭示了一种蛋白质介导的 DNA 桥接机制的分子基础,该机制介导了肠杆菌中一个大染色体结构域的凝聚。