Suppr超能文献

使用深度学习从4D OCT图像中分割跳动的胚胎心脏结构。

Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning.

作者信息

Ling Shan, Blackburn Brecken J, Jenkins Michael W, Watanabe Michiko, Ford Stephanie M, Lapierre-Landry Maryse, Rollins Andrew M

机构信息

Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Biomed Opt Express. 2023 Apr 6;14(5):1945-1958. doi: 10.1364/BOE.481657. eCollection 2023 May 1.

Abstract

Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.

摘要

光学相干断层扫描(OCT)已被用于研究心脏发育,因为它能够对跳动的胚胎心脏的结构和功能进行成像。心脏结构分割是使用OCT对胚胎心脏运动和功能进行量化的前提条件。由于手动分割既耗时又费力,因此需要一种自动方法来促进高通量研究。本研究的目的是开发一种图像处理流程,以促进从4D OCT数据集中分割跳动的胚胎心脏结构。在鹌鹑胚胎心脏的多个平面上获取连续的OCT图像,并使用基于图像的回顾性门控将其重新组合成一个4D数据集。选择不同时间点的多个图像体积作为关键体积,并手动标记它们的心脏结构,包括心肌、心胶和管腔。基于配准的数据增强用于通过学习关键体积与其他未标记体积之间的变换来合成额外的标记图像体积。然后,使用合成的标记图像训练一个用于心脏结构分割的全卷积网络(U-Net)。所提出的基于深度学习的流程仅使用两个标记图像体积就实现了高分割精度,并将分割一个4D OCT数据集的时间成本从一周减少到两小时。使用这种方法,可以进行队列研究,以量化发育中心脏的复杂心脏运动和功能。

相似文献

9
Lens structure segmentation from AS-OCT images via shape-based learning.通过基于形状的学习从AS-OCT图像中进行晶状体结构分割。
Comput Methods Programs Biomed. 2023 Mar;230:107322. doi: 10.1016/j.cmpb.2022.107322. Epub 2022 Dec 23.

本文引用的文献

10
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks.基于示例卷积神经网络的判别式无监督特征学习。
IEEE Trans Pattern Anal Mach Intell. 2016 Sep;38(9):1734-47. doi: 10.1109/TPAMI.2015.2496141. Epub 2015 Oct 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验