Department of Physics, Arizona State University, Tempe, AZ 85287, USA; Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA.
Ultramicroscopy. 2014 Jan;136:211-5. doi: 10.1016/j.ultramic.2013.10.009. Epub 2013 Oct 19.
Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin-fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition.
纤维蛋白原在各种表面上的吸附会产生一个纳米级的多层基质,强烈地降低血小板和白细胞的黏附,这对生物材料的止血和血液相容性有影响。纤维蛋白原基质的非黏附特性基于其伸展性,从而导致细胞整合素无法传递强机械力,并导致弱细胞内信号转导。此外,减少的细胞黏附可能源于基质浅层中纤维蛋白原分子之间较弱的关联。这种稳定性的降低会使整合素能够以与打破整合素-纤维蛋白原键所需相当或更小的力将纤维蛋白原分子从基质中拉出。为了检验这种可能性,我们开发了一种基于全内反射荧光显微镜、原子力显微镜下单细胞操作和微接触印刷相结合的方法,来研究纤维蛋白原分子从基质转移到细胞上的情况。我们计算了野生型 HEK 293(HEK WT)和表达白细胞整合素 Mac-1 的 HEK 293 细胞(HEK Mac-1)在与荧光标记纤维蛋白原的多层基质接触前后每个像素的平均荧光强度。对于 500 秒的接触时间,与 HEK WT 细胞相比,HEK Mac-1 细胞的荧光强度中位数增加了 57%。结果表明,整合素 Mac-1-纤维蛋白原相互作用强于基质浅层中纤维蛋白原分子之间的相互作用。多层纤维蛋白原表面的机械稳定性低可能导致纤维蛋白原涂层基底的细胞黏附特性降低。我们预计,所描述的方法可以应用于各种细胞类型,以检查它们的整合素介导的对具有可变蛋白质组成的细胞外基质的黏附。