Suppr超能文献

心肌细胞肥大信号的网络重建和系统分析。

Network reconstruction and systems analysis of cardiac myocyte hypertrophy signaling.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.

出版信息

J Biol Chem. 2012 Dec 7;287(50):42259-68. doi: 10.1074/jbc.M112.382937. Epub 2012 Oct 22.

Abstract

Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression.

摘要

心肌肥厚是由密集的信号通路网络调控的,许多信号通路都影响心肌细胞的生长。为了更好地理解心肌肥厚信号转导并开发更有效的心力衰竭治疗方法,我们需要定量了解各个信号通路及其相互作用的贡献。我们开发了心肌肥厚信号网络的计算模型,以确定组件和网络拓扑结构如何导致转录因子、基因表达和心肌细胞大小的差异调节。我们的心肌肥厚信号网络计算模型包含 106 个物种和 193 个反应,整合了调节心肌细胞生长的 14 条已建立的途径。使用已发表的实验数据测试受体激活对转录因子和心肌细胞表型输出的影响,验证了 114 个模型预测中的 109 个。网络基元分析显示 bifan 和 biparallel 串扰基元富集。敏感性分析用于将网络聚类成模块,并确定对细胞生长影响最大的物种。许多物种影响心肌肥厚,但只有少数物种具有较大的正或负面影响。Ras 是网络枢纽,对细胞面积的影响大于网络中的任何其他蛋白质,并验证了该模型预测在培养的心肌细胞中的表现。通过这个综合计算模型,我们确定了心肌肥厚信号网络中最具影响力的物种,并展示了不同层次的网络组织如何影响心肌细胞大小、转录因子和基因表达。

相似文献

9
The mAKAP signalosome and cardiac myocyte hypertrophy.mAKAP信号体与心肌细胞肥大
IUBMB Life. 2007 Mar;59(3):163-9. doi: 10.1080/15216540701358593.
10
mAKAP-a master scaffold for cardiac remodeling.mAKAP——心脏重塑的主要支架蛋白
J Cardiovasc Pharmacol. 2015 Mar;65(3):218-25. doi: 10.1097/FJC.0000000000000206.

引用本文的文献

2
Thermodynamically consistent, reduced models of gene regulatory networks.基因调控网络的热力学一致简约模型。
R Soc Open Sci. 2025 Jul 9;12(7):241725. doi: 10.1098/rsos.241725. eCollection 2025 Jul.
5
Logic-based modeling of biological networks with Netflux.使用Netflux对生物网络进行基于逻辑的建模。
PLoS Comput Biol. 2025 Apr 4;21(4):e1012864. doi: 10.1371/journal.pcbi.1012864. eCollection 2025 Apr.

本文引用的文献

6
Cardiac plasticity.心脏可塑性
N Engl J Med. 2008 Mar 27;358(13):1370-80. doi: 10.1056/NEJMra072139.
8
Tackling heart failure in the twenty-first century.应对21世纪的心力衰竭问题。
Nature. 2008 Feb 21;451(7181):919-28. doi: 10.1038/nature06798.
10
Computing topological parameters of biological networks.计算生物网络的拓扑参数。
Bioinformatics. 2008 Jan 15;24(2):282-4. doi: 10.1093/bioinformatics/btm554. Epub 2007 Nov 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验